Versatile polymer film synthesis method invented

August 2, 2013 by Anne Ju
Scanning electron microscopy images at different length scales of a cross-section of a porous block copolymer film. Credit: Wiesner lab

(Phys.org) —Forming perfect porous polymer films is not enough; they need both large and small pores, and the process of making them needs to be simple, versatile and repeatable. Creatively combining already established techniques, Cornell materials researchers have devised a so-called hierarchical porous polymer film synthesis method that may help make these materials useful for applications ranging from catalysis to bioengineering.

The research team was led by Ulrich Wiesner, the Spencer T. Olin Professor of Engineering, and the experiments were completed by graduate student Hiroaki Sai, first author on a paper reporting the results online in the journal Science, Aug. 2. The research collaboration drew on the expertise of other Cornell scientists in materials growth and characterization.

The hierarchically structured polymers are porous at both micron- and nano-length scales. This provides both high flux, which means materials can flow through it efficiently, as well as – both important, for example, in rapid catalytic conversions. The materials were self-assembled from a series of , which are large molecules comprising "blocks" of repeating units.

Researchers have made such before, Wiesner said, but the methods usually involve post-processing; for example, once the polymer is made, the pores need to be etched into the material.

With their new method, the researchers achieved dual porosity by evaporating a solvent from a mixture of a block copolymer with a small molecule additive that is chemically similar to one of the blocks. The two components form two coexisting phases, like water and oil, with a continuous interface between them separated by tens of microns. This method of is known as spinodal decomposition.

Versatile polymer film synthesis method invented
A schematic summarizing the polymer synthesis method.

One of the two phases rich in the block copolymer then phase-separates on the tens of nanometers scale into two domains formed by the two blocks of the copolymer. One of the blocks, a polyethylene oxide (PEO) block, is swollen with the small molecule additive, which is immiscible – doesn't mix – with the other block of the polymer.

When the additive was washed away, e.g., with water, what remained was a continuous pattern of porosities on two lengths scales – tens of microns, and tens of nanometers.

"It's about as simple as it gets," Wiesner said. The researchers tried the method with multiple diblock and even triblock polymers, and contend that the method can be generalized for making many versions of this highly sought-after material. What's more, they were able to easily tune the nanostructure of the resulting polymer by adjusting the temperature at which the original organic solvent was evaporated.

Once made, the material had to be tested for utility. Lara Estroff, associate professor of science and engineering, and her student Emily Asenath-Smith helped the scientists grow calcite crystals on the porous polymers. Electron microscopy confirmed that the calcite infiltrated the entire structure, small and large pores, thus demonstrating transport of calcite precursors through the porous structure.

Researchers including David Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science, and his student Robert Hovden contributed tomography to characterize the nanoporous structure of the polymers. The researchers also used nanoscale computer tomography to quantify the network of micron-sized connected throughout the samples.

The paper, "Hierarchical Porous Polymer Scaffolds from Block Copolymers," included co-authors Kwan Wee Tan, Kahyun Hur, Yi Jiang, Mark Riccio, Veit Elser and Sol Gruner, the John L. Wetherill Professor of Physics.

Explore further: Single-crystal films could advance solar cells (w/ Video)

More information: www.sciencemag.org/content/341/6145/530.full

Related Stories

Chemically assembled metamaterials may lead to superlenses

November 2, 2011

(PhysOrg.com) -- Nanomanufacturing technology has enabled scientists to create metamaterials -- stuff that never existed in nature -- with unusual optical properties. They could lead to "superlenses" able to image proteins, ...

Nano compartments may aid drug delivery, fuel cell design

April 18, 2013

(Phys.org) —In a scientific two-for-one deal, Cornell researchers have created compartment nanoparticles that may carry two or more different drugs to the same target. Meanwhile, the same technology gets applied to fuel ...

Organic polymers show sunny potential

May 29, 2013

(Phys.org) —A new version of solar cells created by laboratories at Rice and Pennsylvania State universities could open the door to research on a new class of solar energy devices.

Recommended for you

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.