Ultra-high-speed nanomaterial synthesis process developed using laser beams

Aug 26, 2013

Dr. Jun Yeop, Yeo and the research team led by Professor Seung Hwan, Ko (both of the Department of Mechanical Engineering at KAIST) successfully developed a process enabling the location-determinable, ultra high speed synthesis of nanomaterials using concentrated laser beams. The result of the research effort was published as the frontispiece in the July 9th edition of Advanced Functional Materials, a world renowned material science and engineering academic journal.

Application of the process reduced the time needed to process of nanomaterial synthesis from a few hours to a mere five minutes. In addition, unlike conventional nanomaterial synthesis processes, it is simple enough to enable mass production and commercialization. Conventional processes requires of 900~1000oC and the use of toxic or explosive vapors. Complex processes such as separation after synthesis, patterning, and etc. are needed for application in electronic devices. The multi-step, expensive, environmentally unfriendly characteristics of nanomaterial synthesis served as road blocks to its mass production and commercialization. Exposing the precursor to concentrated continuous laser beam (green wavelength) resulted in the synthesis of in the desired location; the first instance in the world to accomplish this feat. The process makes possible production, integration and patterning of nanomaterials using a single process.

Applicable to various surfaces and substrates, nanowires have been successfully synthesized on flexible and controlled patterning on the surface of 3-dimensional structures. Dr. Yeo commented that the research effort has "yielded the creation of a nanomaterial synthesis process capable of synthesis, integration, pattern, and material production using light energy" and has "reduced the synthesis process time of nanomaterial to one tenths of the conventional process." Dr. Yeo continues to devised steps to commercialize the new multifunctional electronic material and methods for mass production.

Explore further: Ultra-high-strength metamaterial developed using graphene

add to favorites email to friend print save as pdf

Related Stories

Ultra-high-strength metamaterial developed using graphene

Aug 26, 2013

New metamaterial has been developed exhibiting hundreds of times greater strength than pure metals. Researchers from KAIST have developed a composite nanomaterial. The nanomaterial consists of graphene inserted in copper ...

Sound waves precisely position nanowires

Jun 19, 2013

(Phys.org) —The smaller components become, the more difficult it is to create patterns in an economical and reproducible way, according to an interdisciplinary team of Penn State researchers who, using ...

Greener methods for making popular nanoparticle

Apr 24, 2013

Already renowned for its beneficial effects on human health, green tea could have a new role—along with other natural plant-based substances—in a healthier, more sustainable production of the most widely used family of ...

Recommended for you

Making graphene in your kitchen

18 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.