Novel topological crystalline insulator shows mass appeal

Aug 29, 2013

Disrupting the symmetrical structure of a solid-state topological crystalline insulator creates mass in previously mass-less electrons and imparts an unexpected level of control in this nascent class of materials, an international team of researchers reports in the current edition of Science Express.

The researchers not only confirmed several about topological crystalline (TCIs), but made a significant experimental leap forward that revealed even more details about the crystal structure and of these newly identified materials, according to Boston College Associate Professor of Physics Vidya Madhavan, one of the lead authors of the report.

The findings could pave the way for engineering the of TCI surfaces towards novel functionalities at the nanoscale.

"There is a lot of rich physics here that's waiting to be explored," said Madhavan. "We've opened the door to better understanding topological crystalline insulators and the potential of these materials."

Confirmed within the past few years, topological insulators possess interiors that behave like insulators, blocking the flow of electrons. Yet externally, they contain conducting states where electrons can move freely across their surfaces. A few years ago, physicists first posited the existence of TCIs, a new class of topological materials where conducting surface electrons are theorized to obey fundamental set by the of the interior.

Starting with a TCI consisting of lead and selenium, researchers sought to disrupt its structural symmetry by provoking, or doping, the material through the addition of tin, Madhavan said. The subsequent disruption had a dramatic effect on mass-less "Dirac" electrons that are present within the material and behave as . The manipulation added mass to some of these electrons, which took their places side-by-side with the Dirac electrons, a startling result in a solid-state material, Madhavan said.

The new massive electrons were measured topologically through scanning tunneling microscopy and electrically through spectroscopy, the researchers report.

The analysis revealed the Dirac point, which is the defining characteristic of the TCI, said Madhavan. Furthermore, the researchers found that varying the amount of tin imparted a measure of control over the material's properties, fulfilling yet another theoretical prediction.

Madhavan said the results confirmed the TCI's exotic band structure, a measure of the energy a surface electron may or may not possess within a solid. At the same time, the fundamental properties of the TCI remained accessible.

Moreover, observing and controlling Dirac electrons in TCIs paves the way for investigating relativistic physics in solid state systems: physics which was previously accessible only in the experiments of high-energy physics where particles are accelerated to speeds close to light.

In addition, the experiments revealed two distinct regimes of fermiology, an energy boundary used to make determinations about the properties of metals and semiconductors.

Explore further: Synthesis of a new lean rare earth permanent magnetic compound superior to Nd2Fe14B

More information: "Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator" Science Express, 2013.

Related Stories

Scientists find asymmetry in topological insulators

Aug 13, 2013

New research shows that a class of materials being eyed for the next generation of computers behaves asymmetrically at the sub-atomic level. This research is a key step toward understanding the topological insulators that ...

Researchers forward quest for quantum computing

May 23, 2013

Research teams from UW-Milwaukee and the University of York investigating the properties of ultra-thin films of new materials are helping bring quantum computing one step closer to reality.

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

8 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

8 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

9 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 0