Tiny fish make 'eyes' at their killer

Aug 19, 2013

Small prey fish can grow a bigger 'eye' on their rear fins as a way of distracting predators and dramatically boosting their chances of survival, new scientific research has found.

Researchers from Australia's ARC Centre of Excellence for Coral Reef Studies (CoECRS) have made a world-first discovery that, when constantly threatened with being eaten, small damsel fish not only grow a larger false ' spot' near their tail – but also reduce the size of their real eyes.

The result is a fish that looks like it is heading in the opposite direction – potentially confusing predatory fish with plans to gobble them up, says Oona Lönnstedt, a graduate student at CoECRS and James Cook University.

For decades scientists have debated whether false , or dark circular marks on less vulnerable regions of the bodies of prey animals, played an important role in protecting them from predators – or were simply a fortuitous evolutionary accident.

The CoECRS team has found the first that fish can change the size of both the misleading spot and their real eye to maximise their chances of survival when under threat.

"It's an amazing feat of cunning for a tiny fish," Ms Lonnstedt says. "Young damsel fish are pale yellow in colour and have this distinctive black circular 'eye' marking towards their tail, which fades as they mature. We figured it must serve an important purpose when they are young."

"We found that when young damsel fish were placed in a specially built tank where they could see and smell predatory fish without being attacked, they automatically began to grow a bigger eye spot, and their real eye became relatively smaller, compared with damsels exposed only to herbivorous fish, or isolated ones.

"We believe this is the first study to document predator-induced changes in the size of eyes and eye-spots in ."

When the researchers investigated what happens in nature on a coral reef with lots of predators, they found that juvenile damsel fish with enlarged eye spots had an amazing five times the survival rate of fish with a normal-sized spot.

"This was dramatic proof that eyespots work – and give young fish a hugely increased chance of not being eaten.

"We think the eyespots not only cause the predator to attack the wrong end of the fish, enabling it to escape by accelerating in the opposite direction, but also reduce the risk of fatal injury to the head," she explains.

The team also noted that when placed in proximity to a predator the young damsel fish also adopted other protective behaviours and features, including reducing activity levels, taking refuge more often and developing a chunkier body shape less easy for a predator to swallow.

"It all goes to show that even a very young, tiny a few millimetres long have evolved quite a range of clever strategies for survival which they can deploy when a threatening situation demands," Ms Lonnstedt says.

Their paper "Predator-induced changes in the growth of eyes and false eyespots" by Oona M. Lonnstedt, Mark I. McCormick and Douglas P. Chivers appears in the latest issue of the journal Scientific Reports.

Explore further: Risk-taking behavior depends on metabolic rate and temperature in great tits

More information: www.nature.com/srep/2013/13072… /full/srep02259.html

add to favorites email to friend print save as pdf

Related Stories

Nothing fishy about swimming with same-sized mates

Feb 06, 2013

Have you ever wondered why, and how, shoals of fish are comprised of fish of the same size? According to new research by Ashley Ward, from the University of Sydney in Australia, and Suzanne Currie, from Mount Allison University ...

Parasitised fish pick sides

Jun 03, 2013

(Phys.org) —Fish with parasites attached to their heads have a stronger preference for left or right when facing a T-intersection, giving them an edge when it comes to escaping predators, research from ...

Baby fish 'steer by the sun'

Jul 08, 2013

(Phys.org) —Baby coral reef fishes find their way home using the sun and a body clock to steer by.

Carbon dioxide affecting fish brains: study

Jan 16, 2012

Rising human carbon dioxide emissions may be affecting the brains and central nervous systems of sea fish, with serious consequences for their survival, according to new research.

Recommended for you

Little blue penguin back at sea after hospital stint

1 hour ago

Wildbase Recovery Community Trust ambassador and Rangitikei MP Ian McKelvie joined Massey University veterinary staff to release a little blue penguin back into the sea at Himatangi Beach this morning.

Dolphins are attracted to magnets

23 hours ago

Dolphins are indeed sensitive to magnetic stimuli, as they behave differently when swimming near magnetized objects. So says Dorothee Kremers and her colleagues at Ethos unit of the Université de Rennes ...

User comments : 0