Team 'spikes' stem cells to generate myelin

August 28, 2013
Team 'spikes' stem cells to generate myelin
Myelination of spiking and non-spiking mESC-OPCs Credit: © UC Regents

Stem cell technology has long offered the hope of regenerating tissue to repair broken or damaged neural tissue. Findings from a team of UC Davis investigators have brought this dream a step closer by developing a method to generate functioning brain cells that produce myelin—a fatty, insulating sheath essential to normal neural conduction.

"Our findings represent an important conceptual advance in ," said Wenbin Deng, principal investigator of the study and associate professor at the UC Davis Department of Biochemistry and Molecular Medicine. "We have bioengineered the first generation of myelin-producing cells with superior ."

The brain is made up predominantly of two cell types: neurons and glial cells. Neurons are regarded as responsible for thought and sensation. Glial cells surround, support and communicate with neurons, helping neurons process and transmit information using electrical and . One type of glial cell—the oligodendrocyte—produces a sheath called myelin that provides support and insulation to neurons. Myelin, which has been compared to insulation around electrical wires that helps to prevent short circuits, is essential for normal neural conduction and ; well-recognized conditions involving defective myelin development or myelin loss include multiple sclerosis and .

In this study, the UC Davis team first developed a novel protocol to efficiently induce embryonic stem cells (ESCs) to differentiate into oligodendroglial (OPCs), early cells that normally develop into . Although this has been successfully done by other researchers, the UC Davis method results in a purer population of OPCs, according to Deng, with fewer other cell types arising from their technique.

They next compared electrophysiological properties of the derived OPCs to naturally occurring OPCs. They found that unlike natural OPCs, the ESC-derived OPCs lacked sodium ion channels in their cell membranes, making them unable to generate spikes when electrically stimulated. Using a technique called viral transduction, they then introduced DNA that codes for sodium channels into the ESC-derived OPCs. These OPCs then expressed ion channels in their cells and developed the ability to generate spikes.

According to Deng, this is the first time that scientists have successfully generated OPCs with so-called spiking properties. This achievement allowed them to compare the capabilities of spiking cells to non-spiking cells.

In cell culture, they found that only spiking OPCs received electrical input from neurons, and they showed superior capability to mature into oligodendrocytes.

They also transplanted spiking and non-spiking OPCs into the spinal cord and brains of mice that are genetically unable to produce myelin. Both types of OPCs had the capability to mature into oligo-dendrocytes and produce myelin, but those from spiking OPCs produced longer and thicker myelin sheaths around axons.

"We actually developed 'super cells' with an even greater capacity to spike than natural cells," Deng said. "This appears to give them an edge for maturing into oligodendrocytes and producing better myelin."

It is well known that adult human neural tissue has a poor capacity to regenerate naturally. Although early cells such as OPCs are present, they do not regenerate tissue very effectively when disease or injury strikes.

Deng believes that replacing with the enhanced spiking OPCs to treat neural injuries and diseases has the potential to be a better strategy than replacing neurons, which tend to be more problematic to work with. Providing the proper structure and environment for neurons to live may be the best approach to regenerate healthy . He also notes that many diverse conditions that have not traditionally been considered to be myelin-related diseases—including schizophrenia, epilepsy and amyotrophic lateral sclerosis (ALS)—actually are now recognized to involve defective myelin.

The article, titled "Generation and characterization of spiking and non-spiking oligodendroglial progenitor cells from ," is available online at http://www.ncbi.nlm.nih.gov/pubmed/23940003 in the journal Stem Cells.

Explore further: Researchers discover dynamic behavior of progenitor cells in brain

Related Stories

Decoding mechanisms of cell orientation in the brain

July 31, 2013

When the central nervous system is injured, oligodendrocyte precursor cells (OPC) migrate to the lesion and synthesize new myelin sheaths on demyelinated axons. Scientists at the Institute of Molecular Cell Biology at Johannes ...

Mice stem cells guided into myelinating cells by the trillions

September 25, 2011

Scientists at Case Western Reserve University School of Medicine found a way to rapidly produce pure populations of cells that grow into the protective myelin coating on nerves in mice. Their process opens a door to research ...

Recommended for you

Cow gene study shows why most clones fail

December 9, 2016

It has been 20 years since Dolly the sheep was successfully cloned in Scotland, but cloning mammals remains a challenge. A new study by researchers from the U.S. and France of gene expression in developing clones now shows ...

Blueprint for shape in ancient land plants

December 9, 2016

Scientists from the Universities of Bristol and Cambridge have unlocked the secrets of shape in the most ancient of land plants using time-lapse imaging, growth analysis and computer modelling.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.