Survey of cellular signaling pathways reveals proteins that help plants to cope with dehydration

Aug 02, 2013
Figure 1: In wild-type plants (upper left, lower right), the SnRK2 substrate 1 protein inhibits abscisic acid signaling. In mutants lacking SnRK2 substrate 1 (upper right, lower left), the growth-limiting effects of abscisic acid are greatly amplified. Credit: 2013 AAAS

Enzymes called protein kinases modulate cellular activities in virtually every organism. They switch other proteins off or on by tacking on phosphate chemical groups—a process known as phosphorylation—to regulate the activity of downstream signaling pathways. Abscisic acid (ABA), a critical regulator hormone related to plant growth and survival, is one such protein that is modulated by protein kinases. Kazuo Shinozaki from the RIKEN Center for Sustainable Resource Science and colleagues have now obtained valuable insights into a family of kinases that link ABA signaling with another environmental stress pathway.

Shinozaki's group has spent over a decade studying protein kinases that modulate ABA function. "We have been interested in ABA signal transduction pathways in order to understand plant responses to such as drought, high salinity, cold and heat," says Shinozaki.

The researchers previously found that SNF1-related 2 (SnRK2) proteins help switch on various downstream effectors of ABA, and identified a subset of 'subclass III SnRK2s' that also helps plants respond to dehydration via a distinct . In their most recent research, in collaboration with Taishi Umezawa from the Tokyo University of Agriculture and Technology, Shinozaki's group devised a series of experiments to identify downstream targets of these kinases that are involved in mediating the response to osmotic stress or ABA signaling.

Shinozaki and colleagues identified phosphorylated proteins in thale cress plants treated with ABA or subjected to dehydration and compared the results with those for a mutant strain called srk2dei, which is deficient in three key subclass III SnRK2 proteins. Their analysis revealed numerous differentially modified targets, with remarkably little overlap between the dehydrated and ABA-treated targets.

By analyzing the that undergo modification by SnRK2 proteins under these conditions, the researchers gained valuable new insights into plant cellular signaling machinery. For example, they identified a link between the SnRK2 pathway and the mitogen-activated protein kinases, a family of signaling proteins with a critical role in virtually every cellular function. They also detected a novel protein termed SnRK2 substrate 1, which inhibits ABA-mediated growth restriction (Fig. 1) but is apparently unaffected by dehydration-induced signals.

Having demonstrated the power of this approach, Shinozaki hopes to delve deeper into how plants cope with environmental challenges—information that could assist the development of crops that can withstand drought and other crises. "We are interested in 'osmosensors' that can detect water deficit conditions," he says, "and we will continue to analyze the roles of SnRK2 in osmotic-stress signaling."

Explore further: How steroid hormones enable plants to grow

More information: Umezawa, T., et al. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Science Signaling 6, rs8 (2013). dx.doi.org/10.1126/scisignal.2003509

add to favorites email to friend print save as pdf

Related Stories

A new role for cytokinin plant hormones

Sep 09, 2011

When plants, including crops, are exposed to environmental stresses such as drought or high salinity, abscisic acid (ABA), a stress-responsive hormone is synthesized to induce a protective response. At the same time, the ...

Drought resistance explained

Nov 09, 2009

Much as adrenaline coursing through our veins drives our body's reactions to stress, the plant hormone abscisic acid (ABA) is behind plants' responses to stressful situations such as drought, but how it does ...

On guard against drought

Oct 28, 2011

Identification of a gene that helps plants to conserve water under drought conditions will bring biologists closer to understanding how plants tolerate drought. Researchers, led by Takashi Kuromori at Japan's ...

Growing drought-tolerant crops inching forward

Aug 25, 2010

A collaborative team of scientists led by researchers at The Medical College of Wisconsin, in Milwaukee, has used the tools of structural biology to understand how a synthetic chemical mimics abscisic acid (ABA), a key stress ...

Recommended for you

Researchers discover new strategy germs use to invade cells

20 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

20 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0