Breaking up the superbugs' party

Aug 13, 2013

The fight against antibiotic-resistant superbugs has taken a step forward thanks to a new discovery by scientists at The University of Nottingham.

A multi-disciplinary research team at the University's Centre for Biomolecular Sciences has uncovered a new way of inhibiting the toxicity and virulence of the notorious superbug, Pseudomonas aeruginosa.

This bacteria produces an armoury of and is resistant to many conventional antibiotics. It is almost impossible to eradicate P. aeruginosa from the lungs of people with and is therefore a leading cause of death among sufferers. The bug also causes a wide range of infections particularly among hospital patients.

The new discovery concerns the ' ability to 'talk' to each other by producing and sensing small molecules. This is called 'quorum sensing' (QS) and enables a population of individual bacteria to act socially rather than as individuals. QS allows a population of bacteria to assess their numerical strength and make a decision only when the population is 'quorate'.

The mechanism through which QS signals work is by activating gene expression upon interaction of a QS signal molecule with a receptor protein. In many disease-causing bacteria, QS controls genes which are essential for infection. These genes code for virulence factors such as toxins which cause damage to host tissues and the immune system. Interfering with the QS signalling process blocks and renders bacteria unable to cause infection. Consequently QS systems are for the development of new anti-infective drugs which do not kill bacteria but instead block their ability to cause disease.

In a study published in the journal, PLOS Pathogens, the Nottingham team has described how they solved the 3D structure of a receptor protein called PqsR used by P. aeruginosa to sense alkyl quinolone QS signal molecules so that they could visualize the shape of the QS signal molecule-binding site within the PqsR protein.

Professor of Molecular Microbiology, Paul Williams, said: "We were able to synthesize and screen a library of chemical compounds which could fit within the PqsR binding site and block receptor activation by the QS signal molecules. The active compounds were screened for their ability to inhibit QS and through a process of chemical refinement some novel potent QS inhibitors were discovered which were tested biologically on P.aeruginosa and shown to block virulence gene expression."

Professor of Macromolecular Crystallography, Jonas Emsley, added: "This ground-breaking work establishes a platform for the future evaluation and further development of these new QS inhibitor compounds as potential drugs for the treatment of P. aeruginosa infections."

Explore further: Earliest stages of ear development involve a localized signaling cascade

add to favorites email to friend print save as pdf

Related Stories

Fighting bacteria's strength in numbers

May 17, 2012

Scientists at The University of Nottingham have opened the way for more accurate research into new ways to fight dangerous bacterial infections by proving a long-held theory about how bacteria communicate ...

Bacteria toxic to wound-treating maggots

Feb 04, 2010

Bacteria that infect chronic wounds can be deadly to maggot 'biosurgeons' used to treat the lesions, show researchers writing in the journal Microbiology. The findings could lead to more effective treatment of wounds and th ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

Nov 27, 2014

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

raygozak
not rated yet Aug 17, 2013
This is bound to generate resistance sooner or later.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.