Sulfide and iron work together to reveal a new path for radionuclide sequestration

Aug 01, 2013
Sulfide and iron work together to reveal a new path for radionuclide sequestration
Sifting radionuclides with sulfur: Technetium sequestration pathways under sulfidogenic conditions stimulated by nZVI offer a possibly more sustainable, environmentally friendly approach to bioremediation.

As an ongoing concern for the Department of Energy's Office of Biological and Environmental Research (DOE-BER), bioremediation strategies that either remove contaminants or retard their mobility in the environment are long-sought-after solutions. Technetium-99, an isotope generated from nuclear fission stemming from Manhattan Project-era plutonium processing, is among the high-priority radionuclides requiring environmental controls.

In one approach to tackle this problem, scientists measured reduction of soluble (99TcO4?) by nano zerovalent iron (nZVI) that had been pre-exposed to sulfide (S2-) in simulated Hanford Site groundwater. nZVI promotes microbial reduction of sulfate (SO42-) to S2- and offers a promising and sustainable method for generating S2- in the environment.

Their work, using a mix of microscopy-, diffraction-, and spectroscopy-aided assessments and conceptual modeling, was designed to provide a fundamental geochemical understanding of Tc sequestration as new sulfide compounds developed in the presence of nZVI, as well as offer an alternative remediation strategy. The scientists examined the evolution of mineral phases during the changing sulfidation states using a mix of EMSL's capabilities and X-ray (XAS) at the Stanford Synchrotron Radiation Lightsource (SSRL).

They coupled this work to Tc sequestration kinetics under incremental sulfur/iron ratios. Their results showed the importance of iron sulfide in Tc sequestration and how sulfidation of nZVI can direct TcO4? sequestration products from Tc(IV) oxide—which is highly susceptible to reoxidation—to Tc(IV) sulfide phases, providing a more favorable sequestration pathway.

Explore further: Scientists gain first quantitative insights into electron transfer from minerals to microbes

More information: Fan, D. et al. 2013. Reductive Sequestration of Pertechnetate (99TcO4–) by Nano Zerovalent Iron (nZVI) Transformed by Abiotic Sulfide, Environmental Science & Technology 47(10):5302-5310. DOI: 10.1021/es304829z.

add to favorites email to friend print save as pdf

Related Stories

Hospital scanner could curb nuclear waste threat

Jan 29, 2010

Medical equipment used for diagnosis of patients with heart disease and cancer could be a key weapon in stopping nuclear waste seeping into the environment, according to new research.

Recommended for you

Tough foam from tiny sheets

12 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0