Sulfide and iron work together to reveal a new path for radionuclide sequestration

August 1, 2013
Sulfide and iron work together to reveal a new path for radionuclide sequestration
Sifting radionuclides with sulfur: Technetium sequestration pathways under sulfidogenic conditions stimulated by nZVI offer a possibly more sustainable, environmentally friendly approach to bioremediation.

As an ongoing concern for the Department of Energy's Office of Biological and Environmental Research (DOE-BER), bioremediation strategies that either remove contaminants or retard their mobility in the environment are long-sought-after solutions. Technetium-99, an isotope generated from nuclear fission stemming from Manhattan Project-era plutonium processing, is among the high-priority radionuclides requiring environmental controls.

In one approach to tackle this problem, scientists measured reduction of soluble (99TcO4?) by nano zerovalent iron (nZVI) that had been pre-exposed to sulfide (S2-) in simulated Hanford Site groundwater. nZVI promotes microbial reduction of sulfate (SO42-) to S2- and offers a promising and sustainable method for generating S2- in the environment.

Their work, using a mix of microscopy-, diffraction-, and spectroscopy-aided assessments and conceptual modeling, was designed to provide a fundamental geochemical understanding of Tc sequestration as new sulfide compounds developed in the presence of nZVI, as well as offer an alternative remediation strategy. The scientists examined the evolution of mineral phases during the changing sulfidation states using a mix of EMSL's capabilities and X-ray (XAS) at the Stanford Synchrotron Radiation Lightsource (SSRL).

They coupled this work to Tc sequestration kinetics under incremental sulfur/iron ratios. Their results showed the importance of iron sulfide in Tc sequestration and how sulfidation of nZVI can direct TcO4? sequestration products from Tc(IV) oxide—which is highly susceptible to reoxidation—to Tc(IV) sulfide phases, providing a more favorable sequestration pathway.

Explore further: Hospital scanner could curb nuclear waste threat

More information: Fan, D. et al. 2013. Reductive Sequestration of Pertechnetate (99TcO4–) by Nano Zerovalent Iron (nZVI) Transformed by Abiotic Sulfide, Environmental Science & Technology 47(10):5302-5310. DOI: 10.1021/es304829z.

Related Stories

Hospital scanner could curb nuclear waste threat

January 29, 2010

Medical equipment used for diagnosis of patients with heart disease and cancer could be a key weapon in stopping nuclear waste seeping into the environment, according to new research.

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.