Successful deployment of an autonomous deep-sea explorer to search for new forms of microbial life

Aug 14, 2013
Successful deployment of an autonomous deep-sea explorer to search for new forms of microbial life

Scientists are reporting "a significant step forward" in proving the feasibility of launching fleets of autonomous robots that search Earth's deep oceans for exotic new life forms. Their description of successful deployment of the trailblazer for such a project—an autonomous seafloor lander equipped with a mini-laboratory the size of a kitchen trash can that is able to detect minute traces of DNA in the deep oceans—appears in ACS' journal Environmental Science & Technology.

William Ussler III and colleagues note that exotic forms of life may still remain undiscovered around the methane vents in the floor that already have yielded previously unknown albino crabs, bacteria that consume methane and other organisms new to science. However, scientists have had very limited access to the deep ocean to search systematically for such life forms. Ussler and his team set out to modify a successful shallow-water robotic laboratory, called an Environmental Sample Processor (ESP), to work autonomously in the extreme conditions of the deep sea and provide that access. The ESP was conceived, designed and built by researchers at the Monterey Bay Aquarium Research Institute.

They describe development and successful deployment of the deep-sea ESP (D-ESP) at an active methane vent in California's Santa Monica Bay. The robotic laboratory inside the D-ESP collected and analyzed water samples in real-time for genetic signatures of microbial life in this methane-rich environment a half-mile below the ocean surface. "The deployments of the D-ESP described here are a significant step forward in proving that autonomous molecular analytical laboratories can be used in the deep ocean. To our knowledge, these tests are the first successful deployments of an ecogenomic sensor that unequivocally detected the abundance of microbial genes, in real-time, at water depths greater than 1,600 feet," say the researchers.

Explore further: Environmental Sample Processors help prevent seafood poisoning

More information: "Autonomous Application of Quantitative PCR in the Deep Sea: In situ Surveys of Aerobic Methanotrophs using the Deep-sea Environmental Sample Processor" Environ. Sci. Technol., Article ASAP DOI: 10.1021/es4023199

add to favorites email to friend print save as pdf

Related Stories

Methane-eating microbes found in Illinois aquifer

Jul 25, 2013

Methane-consuming microbes live deep underground in pristine aquifers, according to a study by the U.S. Department of Energy's Argonne National Laboratory and the Environmental Protection Agency. This type of organism, which ...

Recommended for you

Tracking giant kelp from space

9 hours ago

Citizen scientists worldwide are invited to take part in marine ecology research, and they won't have to get their feet wet to do it. The Floating Forests project, an initiative spearheaded by scientists ...

Heavy metals and hydroelectricity

11 hours ago

Hydraulic engineering is increasingly relied on for hydroelectricity generation. However, redirecting stream flow can yield unintended consequences. In the August 2014 issue of GSA Today, Donald Rodbell of ...

What's wiping out the Caribbean corals?

11 hours ago

Here's what we know about white-band disease: It has already killed up to 95 percent of the Caribbean's reef-building elkhorn and staghorn corals, and it's caused by an infectious bacteria that seems to be ...

User comments : 0