Strong, elastic 'smart materials' aid design of earthquake-resistant bridges

Aug 28, 2013 by Misha Raffiee
Traditional bridge columns are constructed from concrete and reinforced steel, which are seldom effective against earthquakes. But new research suggests that replacing concrete and steel with smart materials is a good alternative. From left: cement-polyvinyl fiber mixture; fiberglass column; carbon fiber column; nickel titanium shape memory alloy, or nitinol. Credit: Dr. M. Saiid Saiidi, NEES@University of Nevada, Reno

Bridges are a main component of the transportation infrastructure as we know it today. There are no less than 575,000 highway bridges nationwide, and more than $5 billion are allocated yearly from the federal budget for bridge repairs.

Over the past couple of decades, increasing seismic activity around the world has been identified as an impending threat to the strength and well-being of our bridges. Earthquakes have caused collapses in the U.S., Japan, Taiwan, China, Chile, Turkey, and elsewhere. Therefore, we need to find ways to minimize seismic effects on bridges, both by improving existing bridges and refining specifications and construction materials for future bridges.

A large majority of bridges are made of steel and concrete. While this combination is convenient and economical, steel- don't hold up as well in strong earthquakes (7.0 magnitude or higher). Conventional reinforced columns rely on the steel and concrete to dissipate energy during strong earthquakes, potentially creating permanent deformation and damage in the column and making the column unusable.

Under earthquake loading, engineers allow for damage in column hinges to dissipate energy and prevent total bridge collapse. While that practice is widely accepted, the effects of hinge damage can interfere with disaster recovery operations and have a major economic impact on the community.

With funding from the National Science Foundation (NSF) and using NSF's George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES), M. Saiid Saiidi of the University of Nevada, Reno (UNR), and his colleagues have discovered a solution. They've identified several smart materials as alternatives to steel and concrete in bridges.

Shape memory alloys (SMAs) are unique in their ability to endure heavy strain and still return to their original state, either through heating or superelasticity. SMAs demonstrate an ability to re-center bridge columns, which minimizes the permanent tilt columns can experience after an earthquake.

Nickel titanium, or nitinol, the shape memory alloy tested in the UNR project, has a unique ability even amongst SMAs. While the majority of SMAs are only temperature-sensitive, meaning that they require a heat source to return to their original shape, Nitinol is also superelastic. This means that it can absorb the stress imposed by an earthquake and return to its original shape, which makes nitinol a particularly advantageous alternative to steel. In fact, the superelasticity of is between 10 to 30 times the elasticity of normal metals like steel.

Many of us know nickel titanium from our flexible prescription eyeglass frames. The material allows frames to easily return to their original shape after being bent in any direction. Nickel titanium's uses are extremely varied, with applications that range from medicine to heat engines, lifting devices and even novelty toys—and now, .

To assess the performance of nickel-titanium reinforced concrete bridges, the researchers analyzed three types of bridge columns: traditional steel and concrete, nickel titanium and concrete, and nickel titanium and engineered cementitious composites (ECC), which include cement, sand, water, fiber and chemicals. First, they modeled and tested the columns in OpenSEES, an earthquake simulation program developed at the University of California, Berkeley. Finally, they assembled and tested the columns on the UNR NEES shake table.

To strengthen the concrete and prevent immediate failure in an earthquake, the researchers used the shake tables to test glass and carbon fiber-reinforced polymer composites. Both composites substantially enhanced the reinforcing properties of concrete and the columns resisted strong earthquake forces with minor damage.

The results of both the modeling and shake table tests were extremely promising. The nickel titanium/ECC bridge columns outperformed the traditional steel and concrete bridge columns on all levels, limiting the amount of damage that the bridge would sustain under strong earthquakes.

While the initial cost of a typical bridge made of nickel titanium and ECC would be about 3 percent higher than the cost of a conventional bridge, the bridge's lifetime cost would decrease. Not only would the bridge require less repair, it would also be serviceable in the event of moderate and strong earthquakes. As a result, following a strong earthquake, the bridge would remain open to emergency vehicles and other traffic.

Explore further: Britain to trial driverless cars from 2015

Related Stories

Powerful Quake to Test New Bridge Construction Method

May 12, 2010

(PhysOrg.com) -- A magnitude 7.0 earthquake will strike at the University at Buffalo on May 18 as researchers conduct tests on a 70-ton, 60-foot-long concrete bridge in the university's massive Structural Engineering and ...

Studying how skyscraper foundations stand up to earthquakes

Dec 06, 2011

UC Davis engineers are preparing to conduct the first rigorous tests of how the steel columns that secure skyscrapers to their foundations stand up during earthquakes, research that could make the towering structures safer ...

Recommended for you

Printing the metals of the future

Jul 29, 2014

3-D printers can create all kinds of things, from eyeglasses to implantable medical devices, straight from a computer model and without the need for molds. But for making spacecraft, engineers sometimes need ...

3D printing helps designers build a better brick

Jul 29, 2014

Using 3-D printing and advanced geometry, a team at Cornell has developed a new kind of building material – interlocking ceramic bricks that are lightweight, need no mortar and make efficient use of materials.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Humpty
1 / 5 (3) Aug 28, 2013
What a crock of shit.

There is enormous amounts of car tyre rubber to shred and that can be used to make great big flexible bearing pads that compress and flex and give when moved.

All these idiots are doing is putting stiffer spokes in the wagon wheel, instead of suspension on the axle, and a tyre around the rim.
hemitite
not rated yet Aug 28, 2013
Gee Humpty, what if the seismic waves were just the right frequency to make the bridge bed bounce up and down on all of those rubber pads. I think at that point one may want to have some strength and elastic failure resistance handy.