'Soft' approach leads to revolutionary energy storage

Aug 01, 2013
Credit: University of Manchester

Monash University researchers have brought next generation energy storage closer with an engineering first - a graphene-based device that is compact, yet lasts as long as a conventional battery.

Published today in Science, a research team led by Professor Dan Li of the Department of Materials Engineering has developed a completely new strategy to engineer graphene-based supercapacitors (SC), making them viable for widespread use in renewable energy storage, portable electronics and electric vehicles.

SCs are generally made of highly porous carbon impregnated with a liquid electrolyte to transport the electrical charge. Known for their almost indefinite lifespan and the ability to re-charge in seconds, the drawback of existing SCs is their low -to-volume ratio - known as energy density. Low energy density of five to eight Watt-hours per litre, means SCs are unfeasibly large or must be re-charged frequently.

Professor Li's team has created an SC with of 60 Watt-hours per litre - comparable to lead-acid batteries and around 12 times higher than commercially available SCs.

"It has long been a challenge to make SCs smaller, lighter and compact to meet the increasingly demanding needs of many commercial uses," Professor Li said.

Graphene, which is formed when graphite is broken down into layers one atom thick, is very strong, chemically stable and an excellent conductor of electricity.

To make their uniquely compact electrode, Professor Li's team exploited an adaptive graphene gel film they had developed previously. They used liquid electrolytes - generally the conductor in traditional SCs - to control the spacing between graphene sheets on the sub-nanometre scale. In this way the liquid electrolyte played a dual role: maintaining the minute space between the graphene sheets and conducting electricity.

Unlike in traditional 'hard' porous carbon, where space is wasted with unnecessarily large 'pores', density is maximised without compromising porosity in Professor Li's electrode.

To create their material, the research team used a method similar to that used in traditional paper making, meaning the process could be easily and cost-effectively scaled up for industrial use.

"We have created a macroscopic material that is a step beyond what has been achieved previously. It is almost at the stage of moving from the lab to commercial development," Professor Li said.

Explore further: Enhanced yet affordable material for supercapacitors: Mass production of 3D mesoporous graphene nano-balls

More information: "Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage" Science, 2013.

Related Stories

Graphite + water = the future of energy storage

Jul 15, 2011

A combination of two ordinary materials – graphite and water – could produce energy storage systems that perform on par with lithium ion batteries, but recharge in a matter of seconds and have an ...

Cork the key to unlocking the potential of graphene

Dec 04, 2012

Scientists have taken inspiration from one of the oldest natural materials to exploit the extraordinary qualities of graphene, a material set to revolutionise fields from computers and batteries to composite ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

lengould100
not rated yet Aug 04, 2013
My understanding was that the limiting factor on capacitor technology was the insulator layers, not the conductor layers.
EnergySolutions
5 / 5 (1) Aug 05, 2013
All we need is 20 of these (x 60watts -- about the size of ten 2-litre soda bottles) to power a home at night. Lets get it done !
PPihkala
not rated yet Aug 07, 2013
Time will tell if the price will allow for diverse applications.

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...