Simple moss plants outperform us by gene number

August 7, 2013

At the genetic level, mosses are more complex than humans: A group of German, Belgian and Japanese scientists, coordinated by Professor Ralf Reski from the University of Freiburg, Germany, published a new study where they describe 32,275 protein-encoding genes from the moss Physcomitrella patens. This is about 10,000 genes more than the human genome contains. Mosses are tiny plants with a simple body plan: They have no roots, no flowers and do not produce seeds. Therefore, they were for a long time they were considered to be simple organisms also at the genetic level.

The moss Physcomitrella was chosen by Reski early on as the organism of choice and is now well established as a model species for basic biology, biotechnology, and synthetic biology on a worldwide scale. Consequently, the US Department of Energy Joint Genome Institute (US DoE JGI) has ennobled the Physcomitrella genome as a "flagship genome". The experts believe that flagship genomes contain information that will help us cope with major challenges occurring during . The expectations include improved crop yields, disease and , , and more efficient biofuel production.

For their recent study the scientists collected all available information on the moss genome as well as transcript evidence and used this data for a completely new bioinformatic analysis. The result is freely available on the community resource, developed and maintained by the Chair of Plant Biotechnology in Freiburg. By combining all DNA and RNA data, the scientists were not only able to annotate the 32,275 genes that encode proteins but also to reveal the so-called "dark matter of the genome", i.e. those genomic regions that are transcribed into small non-coding RNAs like microRNAs.

"One of our intriguing findings is that 13 per cent of the Physcomitrella genes have no clear relatives in any other sequenced organism so far. Analysing these orphan genes more deeply will reveal the hidden treasures of the moss genome", Reski says. "Although it seems annoying that mosses outperform humans greatly by gene number, it is exactly this feature that may secure our future."

Ralf Reski heads the Freiburg Chair of Plant Biotechnology. The biologist is a member of the Cluster of Excellence BIOSS - Centre for Biological Signalling Studies and Senior Fellow at FRIAS, the Freiburg Institute for Advanced Studies of the University of Freiburg. In addition, Reski is co-founder of the Trinational Institute for Plant Research TIP, and, effective from October on, Senior Fellow at USIAS, the University of Strasbourg Institute for Advanced Study, France.

Explore further: Genomic atlas of gene switches in plants provides roadmap for crop research

More information: Zimmer, A. Lang, D. et al. (2013): Reannotation and extended community resources of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 14, 498.

Related Stories

Recommended for you

Researchers identify genes for 'Help me!' aromas from corn

October 25, 2016

When corn seedlings are nibbled by caterpillars, they defend themselves by releasing scent compounds that attract parasitic wasps whose larvae consume the caterpillar—but not all corn varieties are equally effective at ...

Genome editing: Efficient CRISPR experiments in mouse cells

October 25, 2016

In order to use the CRISPR-Cas9 system to cut genes, researchers must design an RNA sequence that matches the DNA of the target gene. Most genes have hundreds of such sequences, with varying activity and uniqueness in the ...

Structure of key DNA replication protein solved

October 25, 2016

A research team led by scientists at the Icahn School of Medicine at Mount Sinai (ISMMS) has solved the three-dimensional structure of a key protein that helps damaged cellular DNA repair itself. Investigators say that knowing ...

Microbe hunters discover iron-munching microbe

October 25, 2016

A microbe that 'eats' both methane and iron: microbiologists have long suspected its existence, but were not able to find it - until now. Researchers at Radboud University and the Max Planck Institute for Marine Microbiology ...

Study reveals human ability to make ourselves sound bigger

October 25, 2016

Research from the University of Sussex suggests that humans are unique among primates in being able to intentionally alter the frequencies of our voices to sound larger or smaller than we really are, a capacity that is likely ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.