Scientists seek silicon's successor

August 8, 2013 by Lisa M. Krieger

In the hunt for a sequel to silicon, scientists at the SLAC National Accelerator Lab have flipped an "on-off" switch in the mineral magnetite that is far faster than today's transistors.

Computer circuits can't be made ever-smaller and faster with existing materials. So researchers at the Stanford-operated lab are preparing for the day when the famed Moore's Law hits the speed limit - that is, the number of transistors on a circuit no longer double every 1.5 years, as forecast by Intel co-founder Gordon Moore.

Magnetite, a naturally occurring mineral, isn't the answer, but it puts science one step closer.

"Miniaturization requires new materials," said Hermann Durr, the lead investigator of the SLAC team. "For me, this class of material is fascinating."

Using the lab's high-powered Linac Coherent Light Source X-ray laser, the scientists found that it takes just one-trillionth of a second to switch magnetite's from "on" to "off."

That's thousands of times faster than silicon chip transistors.

Magnetite is what gives magnets their pull. It is a common mineral - a type of - found in the black sands of beaches and elsewhere.

In the experiment, the laser struck the mineral - and in a tiny split of a second, the magnetite's rearranged into "islands" of electrical nonconductivity surrounded by conductive regions. The findings are reported in the latest issue of the journal Nature Materials.

But the mineral has too many practical limitations for use in computers.

For instance, the success of the experiment depended on an extremely frigid state: minus 310 degrees Fahrenheit.

"For this to be practical, we need to explore other materials and other methods," said Durr, also a staff scientist at the Stanford Institute for Materials and Energy Science. "We are just at the beginning."

The team is already testing another oxide compound, , which could have speedy switch speeds at room temperature - making it a more promising candidate for commercial use than magnetite.

Elsewhere, researchers are developing alternative materials such as gallium arsenide, graphene and carbon nanotubes.

They envision a day when transistors are so fast, small and energy-efficient that smartphones have the power of supercomputers.

"This is the dream," Durr said, "and to realize a little bit of it is terrific.

"Transistors took 50 years from demonstration to dominance," he said. "It's very hard to imagine what we'll have 50 years from today."

Explore further: Landmark discovery has magnetic appeal for scientists

Related Stories

Landmark discovery has magnetic appeal for scientists

December 21, 2011

A fundamental problem that has puzzled generations of scientists has finally been solved after more than 70 years. An international team of scientists has discovered a subtle electronic effect in magnetite – the most ...

New '4-D' transistor is preview of future computers

December 5, 2012

(—A new type of transistor shaped like a Christmas tree has arrived just in time for the holidays, but the prototype won't be nestled under the tree along with the other gifts.

Fantastic flash memory combines graphene and molybdenite

March 19, 2013

Swiss scientists have combined two materials with advantageous electronic properties—graphene and molybdenite—into a flash memory prototype that is very promising in terms of performance, size, flexibility and energy ...

Speed limit set for ultrafast electrical switch

July 28, 2013

Researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have clocked the fastest-possible electrical switching in magnetite, a naturally magnetic mineral. Their results could drive innovations ...

Recommended for you

The universe's most miraculous molecule

October 9, 2015

It's the second most abundant substance in the universe. It dissolves more materials than any other solvent. It stores incredible amounts of energy. Life as we know it would not be possible without it. And although it covers ...

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...

Trio wins Nobel Prize for mapping how cells fix DNA damage

October 7, 2015

Tomas Lindahl was eating his breakfast in England on Wednesday when the call came—ostensibly, from the Royal Swedish Academy of Sciences. It occurred to him that this might be a hoax, but then the caller started speaking ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Aug 08, 2013
I really hope we can find a good solution that will hugely improve computers. I want THz cpu's in my life time! :P

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.