Scientists reveal how deadly Ebola virus assembles

Aug 15, 2013
The research team included TSRI's Professor Erica Ollmann Saphire (center), Senior Staff Scientist Zachary Bornholdt (right) and Research Assistant Dafna Abelson. Credit: Photo courtesy of The Scripps Research Institute.

Scientists at The Scripps Research Institute (TSRI) have discovered the molecular mechanism by which the deadly Ebola virus assembles, providing potential new drug targets. Surprisingly, the study showed that the same molecule that assembles and releases new viruses also rearranges itself into different shapes, with each shape controlling a different step of the virus's life cycle.

"Like a 'Transformer', this protein of the Ebola virus adopts different shapes for different functions," said Erica Ollmann Saphire, Ph.D., professor in the Department of Immunology and Microbial Science at TSRI. "It revises a central dogma of molecular biology—that a has one shape that predestines one ."

The research was published today in the peer-reviewed journal Cell.

"These findings open doors to developing new drugs against Ebola," added Zachary Bornholdt, Ph.D., senior staff scientist and first author of the study. "Drugs to block could target any of the structures themselves or the intermediate steps in the structural transformation process."

Ebola hemorrhagic fever is one of the most virulent diseases known to humankind. Very few pathogens prove more dangerous than Ebola virus once a person is infected. There is no cure, and the case-fatality rate can be up to 90 percent, depending on which strain is involved.

Ebola virus and its cousin Marburg virus are spread when people come into contact with the bodily fluids of a person or animal who is already infected. Infection causes rapidly progressing , hemorrhage and shock. No drugs or vaccines are yet available for human use. Currently, the standard treatment consists of administering fluids and taking protective measures to ensure containment, such as isolating the patient and washing sheets with bleach.

Once rare, the viruses are now reemerging with increasing frequency, and have caused at least four outbreaks among humans in the last two years. Although the viruses are found most often in Africa, they have been unintentionally imported into the United States and Europe several times, and in recent years a version of the Ebola virus has been found replicating in swine raised for human consumption in Asia.

To conduct the study, Dr. Saphire and her group at TSRI collaborated with Yoshihiro Kawaoka, Ph.D., D.V.M., who holds joint appointments at the University of Wisconsin and University of Tokyo. Dr. Kawaoka's group provided cellular microscopy and critical replication experiments to complement the TSRI team's expertise in x-ray crystallography and protein biochemistry.

The results, five years in the making, revealed the Ebola VP40 protein exists as a dimer, not as a monomer as previously thought, and it rearranges its structure to assemble filaments to build the virus shell or "matrix" to release countless new viruses from infected cells. The study showed the protein also rearranges itself into rings in order to bind RNA and control the internal components of the virus copied inside infected cells.

This "shape-shifting" or "transformer" behavior explains how the Ebola can control a multi-step viral lifecycle using only a very limited number of genes.

Explore further: Cohesin molecule safeguards cell division

More information: "Structural basis for ebolavirus matrix and budding; protein plasticity allows multiple functions," Cell, 2013.

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Cohesin molecule safeguards cell division

12 hours ago

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

13 hours ago

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

15 hours ago

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.