Rapid diversification despite morphological stasis: A snail's pace in a snail's place?

Aug 06, 2013

Evolutionary biologists at the National Museum of Natural History of the Smithsonian Institution and Ghent University (Belgium) have found an unusual system that allows narrowing the gap in the study of evolutionary processes, working on living African freshwater snails and their fossil ancestors.

Species diversification regularly occurs too fast to be accurately recorded in the fossil record but usually too slowly to be readily observed in . The study of evolutionary radiations is thereby confronted with a gap between the timescales and approaches used by biologists and paleontologists. Although they are difficult to study some of these processes influence our daily lives in various ways. The emergence of pesticide or antibiotic- of organisms are examples of rapid evolution, whereas the endangered status of species like the result from the inability of these species to adapt sufficiently rapid to changing conditions.

Evolutionary biologists at the National Museum of Natural History of the Smithsonian Institution and Ghent University (Belgium) have found an unusual system that allows narrowing the gap in the study of evolutionary processes. Working on living African freshwater snails and their fossil ancestors, they document rapid diversification since massive lake level fluctuations that occurred during the Ice Ages. Despite the ever changing environment in which these snails live, morphological characters studied within a lineage of fossils did not change much over five thousand years.

Different morphological characters appear to have behaved differently, with some hardly changing over thousands of years, and others, like body size, changing a lot (the smallest species is less than 1/3 of the size of the largest one). It appears that morphological stasis is a dominant evolutionary pattern, even in young and diversifying clades.

Explore further: Blacklegged tick populations have expanded via migration, biologists show

Related Stories

Recommended for you

'Map of life' predicts ET. (So where is he?)

Jul 02, 2015

Extra-terrestrials that resemble humans should have evolved on other, Earth-like planets, making it increasingly paradoxical that we still appear to be alone in the universe, the author of a new study on ...

Single-celled predator evolves tiny, human-like 'eye'

Jul 01, 2015

A single-celled marine plankton evolved a miniature version of a multi-cellular eye, possibly to help see its prey better, according to University of British Columbia (UBC) research published today in Nature.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.