Polymer solar cells employing Forster resonance energy transfer

Aug 20, 2013
Polymer Solar Cells Employing Förster Resonance Energy Transfer
Next generation solar panels could yield substantially lower costs per kilowatt-hour with this technological development.

Two crucial tasks exist for realizing high-efficiency polymer solar cells: increasing the range of the spectral absorption of light and efficiently harvesting photo-generated excitons. In this work, Förster resonance energy transfer (FRET)-based heterojunction polymer solar cells that incorporate squaraine dye (SQ) were fabricated and investigated.

The high absorbance of squaraine in the near-infrared region broadens the spectral absorption of the solar cells and assists in developing an ordered nano-morphology for enhanced charge transport. Femtosecond spectroscopic studies revealed highly efficient (up to 96%) excitation energy transfer from poly(3-hexylthiophene), also known as P3HT, to squaraine occurring on a picosecond timescale.

A 38% increase in was realized to reach 4.5%; this finding suggests that this system has improved exciton migration over long distances. This architecture transcends traditional multiblend systems, allowing multiple donor materials with separate spectral responses to work synergistically, thereby enabling an improvement in and conversion. This discovery opens up a new avenue for the development of high-efficiency polymer solar cells.

A new energy transfer mechanism has been exploited for the first time, allowing significantly more efficient energy harvesting in P3HT/dye solar cells compared to P3HT-alone solar cells. Also, broadening the light into the near-infrared region and developing nanoscale parts to the solar cell has improved the device.

Allowing different light-absorbing materials to work synergistically has led to well-ordered polymer networks without post-processing.

Energy level diagram of the components of the ternary blend solar cell highlighting pathways for charge generation.

What are the specifics?

  • CFN Capability: CFN's Advanced Optical Spectroscopy & Microscopy Facility was used to understand the energy conversion mechanism and rate of electronic transfer between the dye and polymer in the solar cells.
  • The use of squaraine dye and FRET of charge carriers improved the efficiency of polymer solar cells.  Femtosecond spectroscopic studies revealed highly efficient excitation energy transfer from P3HT to SQ occurring on a picosecond timescale.  This suggested that this system has improved exciton migration over .
  • For the first time, FRET was exploited to enhance exciton harvesting in polymer bulk heterojunction solar cells.

Explore further: The fluorescent future of solar cells

More information: Huang, J. et al. Polymer bulk heterojunction solar cells employing Förster resonance energy transfer, Nature Photonics 7, 479-485 (2013).

Related Stories

The fluorescent future of solar cells

May 09, 2013

(Phys.org) —For some solar cells, the future may be fluorescent. Scientists at Yale have improved the ability of a promising type of solar cell to absorb light and convert it into electrical power by adding ...

Plastic solar cells' new design promises bright future

Aug 14, 2013

Energy consumption is growing rapidly in the 21st century, with rising energy costs and sustainability issues greatly impacting the quality of human life. Harvesting energy directly from sunlight to generate electricity using ...

UCLA scientists double efficiency of novel solar cell

Jul 29, 2013

Nearly doubling the efficiency of a breakthrough photovoltaic cell they created last year, UCLA researchers have developed a two-layer, see-through solar film that could be placed on windows, sunroofs, smartphone ...

Team makes breakthrough in solar energy research

Jul 30, 2013

The use of plasmonic black metals could someday provide a pathway to more efficient photovoltaics (PV) —- the use of solar panels containing photovoltaic solar cells —- to improve solar energy harvesting, ...

Recommended for you

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...