Photons a la Mode: Studying light pulses by counting photons

August 15, 2013

( —The photodetectors in Alan Migdall's lab often see no light at all, and that's a good thing since he and his JQI colleagues perform physics experiments that require very little light, the better to study subtle quantum effects. The bursts of light they observe typically consist of only one or two photons—- the particle form of light—-or (statistically speaking) even less than one photon. Their latest achievement is to develop a new way of counting photons to understand the sources and modes of light in modern physics experiments.

Migdall's lab, located at the National Institute for Standards and Technology (NIST), is just outside Washington, DC in the US. The new -measuring protocol is summarized in a recent issue of the journal Physical Review A. The work reported there was performed in collaboration with NIST's Italian counterpart, the Instituto Nazionale de Ricerca Metrologica (INRIM).

Light modes

Generating light suitable for quantum mechanical applications such as and requires exquisite control over properties such as the frequency, polarization, timing, and direction of the light emitted. For instance, probing atoms with light involves matching the frequency of the light to the atoms' natural often to within one part in a billion. Moreover, communicating with light means encoding information in the arrival time or frequency or spatial position of the light, so high-speed communication means using very closely- spaced arrival times for light pulses, and pinpoint knowledge of the light frequencies and positions of the arriving light in order to fit in as much information as possible.

When a light pulse contains a mixture of light with different frequencies (or polarizations, arrival times, emission angles, etc.) it is said to have multiple modes. In some cases, a single light source will naturally produce such multi-mode light, whereas in others multiple modes are a signature of the presence of additional, and generally unwanted, light sources in the system. Discriminating the different modes in a light field, especially a weak light field that has very few photons, can be extremely difficult as it requires very sensitive detection that can discriminate between modes that are very close together in frequency, space, time, etc.

For instance, to study a pair of entangled photons (created by shooting light into a special crystal where one photon is converted into a pair of secondary, related photons) detection efficiency is all important; and folded into that detection efficiency is a requirement that the arrival of each of the daughter photons be matched to the arrival of the other daughter photon. In addition to this temporal alignment, the spatial alignment of detectors, (each oriented at a specific angle respect to the beamline) must be exquisite. To correct for any type of less-than-perfect alignment, it is necessary to know how many different light modes are arriving at the detector.

Photon number

The laws of quantum mechanics ensure that light always exhibits natural intensity fluctuations. Even from an ultra-stable laser, the number of photons arriving at a detector will vary randomly in time. By recording the number of photons in each pulse of light over a long time, however, the form of the fluctuations of a particular light field will become clear. In particular, we can learn the probability of generating 0, 1, 2, 3, etc. photons in each pulse.

The handy innovation in Migdall's lab was to develop a method to use this set of probabilities to determine the modes in a very weak light field. This method is very useful because most light detectors that can see light at the level of a single photon cannot tell the exact frequency or position of the light, which makes determining the number of modes difficult for such fields.

The JQI-INRIM experiment used a detector "tree" that counts photon number. It did this by taking the incoming light pulse, using partial mirrors to divide the pulse into four, and then allowing these to enter four detectors set up to record individual photons. If the original pulse contained zero photons then none of the detectors will fire. If the pulse contained one photon, then one of the detectors will fire, and so on.

Elizabeth A. Goldschmidt, a JQI researcher and University of Maryland graduate student, is the first author on the research paper. "By looking at just the intensity fluctuations of a light field we have shown that we can learn about the underlying processes generating the light," she said. "This is a novel use of higher-order photon-number statistics, which are becoming more and more accessible with modern photodetection."

Goldschmidt believes that this method of counting photons and statistically analyzing the results as a way of understanding the modes present in will help in keeping tight control over light sources that emit single photons (where, for instance, you want to ensure that unwanted photons are not being produced). And those that emit pairs of entangled photons—-where the quantum relation between the two photons is exactly right, such as in "heralding" experiments, where the detection of a photon in one detector serves as an announcement for the existence of a second, related, photon in a specially staged detector nearby (see related articles).

Alan Migdall compares the photon counting approach to wine tasting. "Just as some experts can taste different flavors in a wine—-a result of grapes coming from different parts of the Loire Valley—-so we can tell apart various modes of light coming from a source." - See more at:

Explore further: Elimination of detrimental cross-talks in single-photon detectors pushes quantum optics to new limits

More information: Goldschmidt, E. et al. Mode reconstruction of a light field by multi-photon statistics, Physical Review A, 88, (2013).

Related Stories

Hi-fi single photons

October 4, 2012

Many quantum technologies—such as cryptography, quantum computing and quantum networks—hinge on the use of single photons. While she was at the Kastler Brossel Laboratory (affiliated with the Pierre and Marie Curie University, ...

Lab sets a new record for creating heralded photons

May 20, 2013

( —Entanglement, by general consensus of physicists, is the weirdest part of quantum science. To say that two particles, A and B, are entangled means that they are actually two parts of an inseparable quantum thing. ...

Optics: Statistics light the way

May 22, 2013

Millions of years of evolution have molded our eyes into highly sensitive optical detectors, surpassing even many man-made devices. Now, Leonid Krivitsky and his co-workers at the A*STAR Data Storage Institute and the A*STAR ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Aug 20, 2013
"For instance, to study a pair of entangled photons (created by shooting light into a special crystal where one photon is converted into a pair of secondary, related photons)"...

I was under the impression that a photon is a fundamental entity. As such, would one not also assume that it cannot be subdivided? The "secondary photons" would also need to be each less than half the size of their 'big momma' photon. So, how would this really work? Or is this just bad authorship? Does anybody understand this well enough to have a go?
Regards, DH66

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.