Optics: Nanotechnology's benefits brought into focus

August 14, 2013
Optics: Nanotechnology’s benefits brought into focus
An optical antenna made of silver, represented by the two blue ellipses, can concentrate red light at a subwavelength scale. Credit: 2013 A*STAR Institute of High Performance

Conventional lenses, made of shaped glass, are limited in how precisely they can redirect beams of incoming light and make them meet at a point. Now, a team led by Zhengtong Liu at the A*STAR Institute of High Performance Computing, Singapore, has proposed a novel approach to 'superlens' systems that can surpass this classical limit of focusing light.

The team used numerical modeling to develop the design. Concentrating radiation into a smaller volume in this way enhances the interaction between light and matter, and thus the concept could prove useful in highly sensitive sensors of the future.

Light is a type of wave. Unlike the rise and fall in at a beach, however, a consists of oscillating electric and magnetic fields. The —the distance a wave travels in one oscillation cycle—imposes a limit on the minimum size to which light can be focused. However, this limit does not apply over small distances that are comparable to the wavelength, which is known as the near-field regime.

The researchers designed a silver nanostructure embedded in glass. Their device combined two separate elements. One component was a nanoantenna—similar to the radio-frequency antennas used to detect television-carrying signals, but reduced in size to match the wavelength of . The other component was a superlens made of a thin slab of silver. The purpose of the superlens was to move the light detected by the nanoantenna into an imaging plane. "Using nanoantennas to concentrate light is not a new idea," says Liu. "But by adding a superlens to translate the concentrated spot of light, we can overcome limitations imposed by the of the material."

Liu and co-workers mathematically modeled the optical response of this device to an incoming beam of red light. They then altered the dimensions of the structure to maximize the enhancement in electric field. In this way, they were able to show that a 20-nanometer-thick superlens, separated by 34 from an antenna made of two silver ellipses, could increase the electric field of light by a factor of 250 (see image).

Confining light into these super intense 'hot-spots' could prove a boon for optical detection systems. "Our concept is targeted at biomedical and chemical sensing applications," explains Liu. "The next step is to seek collaboration opportunities to actually make the sensor and test it in the field."

Explore further: Bimetallic nanoantenna separates colors of light

More information: Liu, Z., Li, E., Shalaev, V. M. & Kildishev, A. V. Near field enhancement in silver nanoantenna-superlens systems. Applied Physics Letters 101, 021109 (2012). dx.doi.org/10.1063/1.4732793

Related Stories

Bimetallic nanoantenna separates colors of light

September 23, 2011

Researchers at Chalmers University of Technology have built a very simple nanoantenna that directs red and blue colours in opposite directions, even though the antenna is smaller than the wavelength of light. The findings ...

A new light wave

August 12, 2013

Hold a magnifying glass over the driveway on a sunny day and it will focus sunlight into a single beam. Hold a prism in front of the window and the light will spread out into a perfect rainbow. Lenses like these have been ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.