Nanosensors could aid drug manufacturing

Aug 16, 2013 by Anne Trafton
Nanosensors could aid drug manufacturing
A micrograph of the nanosensor array. The florescence of each carbon nanotube changes in intensity upon binding to a target molecule. Credit: COURTESY OF THE RESEARCHERS

MIT chemical engineers have discovered that arrays of billions of nanoscale sensors have unique properties that could help pharmaceutical companies produce drugs—especially those based on antibodies—more safely and efficiently.

Using these , the researchers were able to characterize variations in the of antibody drugs, which hold promise for treating cancer and other diseases. They also used the sensors to monitor the structure of , including whether they contain a chain of sugars that interferes with proper function.

"This could help figure out why certain drug formulations work better than others, and may help improve their effectiveness," says Michael Strano, an MIT professor of chemical engineering and senior author of a recent paper describing the sensors in the journal ACS Nano.

The team also demonstrated how nanosensor arrays could be used to determine which cells in a population of genetically engineered, drug-producing cells are the most productive or desirable, Strano says.

Lead author of the paper is Nigel Reuel, a graduate student in Strano's lab. The labs of MIT faculty members Krystyn Van Vliet, Christopher Love and Dane Wittrup also contributed, along with scientists from Novartis.

Testing drug strength

Strano and other scientists have previously shown that tiny, nanometer-sized sensors, such as carbon , offer a powerful way to detect minute quantities of a substance. Carbon nanotubes are 50,000 times thinner than a , and they can bind to proteins that recognize a specific target molecule. When the target is present, it alters the fluorescent signal produced by the nanotube in a way that scientists can detect.

Some researchers are trying to exploit large arrays of nanosensors, such as carbon nanotubes or semiconducting nanowires, each customized for a different , to detect many different targets at once. In the new study, Strano and his colleagues wanted to explore that emerge from large arrays of sensors that all detect the same thing.

The first feature they discovered, through mathematical modeling and experimentation, is that uniform arrays can measure the distribution in binding strength of complex proteins such as antibodies. Antibodies are naturally occurring molecules that play a key role in the body's ability to recognize and defend against foreign invaders. In recent years, scientists have been developing antibodies to treat disease, particularly cancer. When those antibodies bind to proteins found on cancer cells, they stimulate the body's own immune system to attack the tumor.

For antibody drugs to be effective, they must strongly bind their target. However, the manufacturing process, which relies on nonhuman, engineered cells, does not always generate consistent, uniformly binding batches of antibodies.

Currently, drug companies use time-consuming and expensive analytical processes to test each batch and make sure it meets the regulatory standards for effectiveness. However, the new MIT sensor could make this process much faster, allowing researchers to not only better monitor and control production, but also to fine-tune the manufacturing process to generate a more consistent product.

"You could use the technology to reject batches, but ideally you'd want to use it in your upstream process development to better define culture conditions, so then you wouldn't produce spurious lots," Reuel says.

Measuring weak interactions

Another useful trait of such sensors is their ability to measure very weak binding interactions, which could also help with antibody drug manufacturing.

Antibodies are usually coated with long sugar chains through a process called glycosylation. These sugar chains are necessary for the drugs to be effective, but they are extremely hard to detect because they interact so weakly with other molecules. Drug-manufacturing organisms that synthesize antibodies are also programmed to add sugar chains, but the process is difficult to control and is strongly influenced by the cells' environmental conditions, including temperature and acidity.

Without the appropriate glycosylation, delivered to a patient may elicit an unwanted immune response or be destroyed by the body's cells, making them useless.

"This has been a problem for pharmaceutical companies and researchers alike, trying to measure glycosylated proteins by recognizing the carbohydrate chain," Strano says. "What a nanosensor can do is greatly expand the number of opportunities to detect rare binding events. You can measure what you would otherwise not be able to quantify with a single, larger sensor with the same sensitivity."

This tool could help researchers determine the optimal conditions for the correct degree of glycosylation to occur, making it easier to consistently produce effective drugs.

Mapping production

The third property the researchers discovered is the ability to map the production of a molecule of interest. "One of the things you would like to do is find strains of particular organisms that produce the therapeutic that you want," Strano says. "There are lots of ways of doing this, but none of them are easy."

The MIT team found that by growing the cells on a surface coated with an array of nanometer-sized sensors, they could detect the location of the most productive cells. In this study, they looked for an antibody produced by engineered human embryonic kidney cells, but the system could also be tailored to other proteins and organisms.

Once the most productive cells are identified, scientists look for genes that distinguish those cells from the less productive ones and engineer a new strain that is highly productive, Strano says.

Potential applications such as monitoring drug-producing cells are what make the new technology exciting, says Lara Mahal, an associate professor of chemistry at New York University, who was not part of the research team.

"It's potentially very powerful as a way of being able to select out colonies," Mahal says. "Production is something that people are very interested in monitoring. You can have all of these growing in the same environment, yet they don't show the same behavior."

The researchers have built a briefcase-sized prototype of their sensor that they plan to test with Novartis, which funded the research along with the National Science Foundation.

"Carbon nanotubes coupled to protein-binding entities are interesting for several areas of bio-manufacturing as they offer great potential for online monitoring of product levels and quality. Our collaboration has shown that carbon nanotube-based fluorescent sensors are applicable for such purposes, and I am eager to follow the maturation of this technology," says Ramon Wahl, an author of the paper and a principal scientist at Novartis.

The paper is titled "Emergent Properties of Nanosensor Arrays: Applications for Monitoring IgG Affinity Distributions, Weakly Affined Hypermannosylation, and Colony Selection for Biomanufacturing."

Explore further: Intricate algae produce low-cost biosensors

More information: pubs.acs.org/doi/abs/10.1021/nn403215e

Related Stories

Nanotubes Sniff Out Cancer Agents in Living Cells

Jan 16, 2009

(PhysOrg.com) -- A multidisciplinary team at the Massachusetts Institute of Technology (MIT) has developed carbon nanotubes that can be used as sensors for cancer drugs and other DNA-damaging agents inside living cells. The ...

Cancer-fighting antibodies

Dec 22, 2008

(PhysOrg.com) -- MIT engineers have found that antibodies do not need a particular sugar attachment long believed to be essential to their function, a discovery that could make producing therapeutic antibodies ...

Helper cells aptly named in battle with invading pathogens

Aug 09, 2013

By tracking the previously unknown movements of a set of specialized cells, Whitehead Institute scientists are shedding new light on how the immune system mounts a successful defense against hostile, ever-changing ...

Recommended for you

Intricate algae produce low-cost biosensors

17 hours ago

(Phys.org) —Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting miniscule amounts of protein or other biomarkers.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

rsklyar
1 / 5 (2) Aug 18, 2013
One more news that never be published in MIT News is about some other MIT "scientists" which already stole in Nature journals and, with further support of the Harvad's ones, in ASC Nano Lett both the ideas and money of taxpayers. There are numerous swindlers from David H. Koch Inst. for Integrative Cancer Research and Dept of Chem Eng, also with Dept of Chemistry and Chem. Biology and School of Eng and Applied Science of Harvard University at http://issuu.com/...vard_mit .
Their plagiaristic "masterpieces" titled Macroporous nanowire nanoelectronic scaffolds for synthetic tissues (DOI: 10.1038/NMAT3404) and Outside Looking In: Nanotube Transistor Intracellular Sensors (dx.doi.org/10.1021/nl301623p) were funded by NIH Director's Pioneer Award (1DP1OD003900) and a McKnight Foundation Technological Innovations in Neurosc Award, also a Biotechnology Research Endowment from the Dep. of Anesthesiology at Children's Hospital Boston and NIH grant GM073626, DE013023, and DE016516.