Researchers develop molecular switch that changes liquid crystal colors

Aug 26, 2013

Dartmouth researchers have developed a molecular switch that changes a liquid crystal's readout color based on a chemical input. This new development may open the way for using liquid crystals in detecting harmful gases, pathogens, explosives and other chemical substances.

The findings appear in the journal Angewandte Chemie.

One of the challenges in the field of molecular switches and machines is the translation of molecular level motion into macroscopic level events by harnessing light or chemical energy—think of a molecular-sized light switch that can be turned on and off. With an actual light switch, this can be easily done by hard wiring the switch to a light source, but doing this at the nanoscale is challenging.

In their study, the Dartmouth researchers used liquid crystals such as the ones in LCD (liquid crystal display) monitors and TV screens to address this challenge. They synthesized a pH activated that can control the long range assembly of a commercially available liquid crystal called NP5. This manipulation changed the readout color of NP5 from purple to green depending on the applied pH, confirming the molecular level motion is responsible for the change in the photophysical properties of the liquid crystal.

The findings open the way for researchers to design molecular switches that produce different readout colors when harmful chemical substances are detected. If these liquid crystals are used as pixels – similar to the ones in LCD screens – researchers may be able to bunch them together and develop groups of sensors that can quickly analyze and detect hazardous materials.

Explore further: Mobius strip ties liquid crystal in knots to produce tomorrow's materials and photonic devices

add to favorites email to friend print save as pdf

Related Stories

Making efficient color filter for display applications

Aug 29, 2012

Flat panel displays, mobile phones and many digital devices require thin, efficient and low-cost light-emitters for applications. The pixels that make up the different colors on the display are typically ...

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

(Phys.org) —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

User comments : 0

More news stories

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...