A new metric to help understand Amazon rainforest precipitation

Aug 14, 2013

In the Amazon rainforest, the chain of events that turns a small-scale process like a localized increase in evaporation into a towering storm cloud is long and twisted. To understand the complex dynamics that lead to precipitation, and to identify the relative importance of various processes, researchers need high temporal resolution, all-weather observations over many years. Such observations have traditionally been scarce for tropical continental environments, such as the Amazon, where logistics are difficult.

In recent years, however, Global Navigational Satellite System (GNSS) stations have provided a way to gather these measurements of . In their study, Adams et al. use 3.5 years of observations from a GNSS meteorological station in Manaus, Brazil, to analyze the processes that turn localized dynamics into deep convective rainfall.

To identify which physical processes are most important in contributing to cloud formation, growth, and precipitation, the authors developed a new metric called the "water vapor convergence time scale." Moist air is more buoyant than dry, so understanding water vapor convergence is important to understanding the development of deep convective . Using their metric derived from GNSS water vapor observations, the authors identify two main time scales relevant to Amazon convective .

Starting about 12 hours before precipitation onset, the authors find that localized evaporation is the most likely dominant factor in moistening the atmosphere. Then, about 4 hours before the onset of deep convective precipitation, water vapor convergence becomes dominant. This 4-hour period of strong water vapor convergence before heavy rainfall encompasses the transition from shallow to deep convection. This transition is a process during which small, scattered cumulus clouds grow into deep convective towers. The authors find that this 4-hour shallow-to-deep convection transition time scale is not dependent on the season, the intensity of the convective precipitation, or the time of day.

Explore further: Biology trumps chemistry in open ocean

More information: GNSS Observations of Deep Convective Time Scales in the Amazon, Geophysical Research Letters, DOI: 10.1002/grl.50573, 2013 http://onlinelibrary.wiley.com/doi/10.1002/grl.50573/abstract

add to favorites email to friend print save as pdf

Related Stories

Oxygen isotopes improve weather predictability in Niger

May 17, 2012

For the African nation of Niger, the effect of seasonal atmospheric variability on the weather is poorly understood. Because most residents rely on local agriculture, improving the predictability of seasonal weather and precipitation ...

Recommended for you

Better forecasts for sea ice under climate change

2 hours ago

University of Adelaide-led research will help pinpoint the impact of waves on sea ice, which is vulnerable to climate change, particularly in the Arctic where it is rapidly retreating.

"Ferrari of space' yields best map of ocean currents

10 hours ago

A satellite dubbed the "Ferrari of space" has yielded the most accurate model of ocean circulation yet, boosting understanding of the seas and a key impact of global warming, scientists said Tuesday.

Researcher studies deformation of tectonic plates

13 hours ago

Sean Bemis put his hands together side by side to demonstrate two plates of the earth's crust with a smooth boundary running between them. But that boundary is not always smooth and those plates do not always ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.