New insights into the polymer mystique for conducting charges

Aug 09, 2013

For most of us, a modern lifestyle without polymers is unthinkable… if only we knew what they were. The ordinary hardware-store terms we use for them include "plastics, polyethylene, epoxy resins, paints, adhesives, rubber"—without ever recognizing the physical and chemical structures shared by this highly varied—and talented—family of engineering materials.

Polymers increasingly form key components of electronic devices, too—and with its ever-escalating pursuit of high efficiency and low cost, the electronics industry prizes understanding specific behaviors of polymers. The ability of polymers to conduct charge and transport energy is especially appealing.

Now there's help in appreciating the polymer mystique related to the emerging field of molecular conduction in which films of charge-transporting large molecules and polymers are used within electronic devices. These include small-scale applications such as (LED). At the other end of the scale, in cities and across oceans, the polymer polyethylene is the vital insulating component in the reliable and safe transport of electrical energy by high voltage underground cables.

In work appearing in the current edition of the Journal of Applied Physics, researchers at the United Kingdom's Bangor University describes how electrical charges may leak away to the ground through its labyrinth of molecules.

Researchers Thomas J. Lewis and John P. Llewellyn pay particular attention to the nano-scale structure of polyethylene in which crystalline regions are separated by areas known as "amorphous zones." Their novel employment of superexchange and of electrons through the amorphous parts of the polymer helps improve understanding of conduction.

"These findings could lead not only to improved properties of high voltage cables but also to a wider understanding of polymer semiconductors in device applications," said Lewis.

Their investigation shows that the tunneling feature accounts for the majority of the reported high-field charge transport effects in polyethylene.

Explore further: Materials scientists and mathematicians benefit from newly crafted polymers

More information: The article, "Electrical conduction in polyethylene: The role of positive charge and the formation of positive packets" is authored by Thomas J. Lewis and John P. Llewellyn. It appears in the Journal of Applied Physics. dx.doi.org/10.1063/1.4810857

Related Stories

Accidental discovery may lead to improved polymers

Apr 05, 2013

Chemical Engineering Professor Tim Bender and Post-Doctoral Fellow Benoit Lessard's discovery of an unexpected side product of polymer synthesis could have implications for the manufacture of commercial polymers used in sealants, ...

Heterogeneous nanoblocks give polymers an edge

Aug 05, 2013

Building structures by mixing lego bricks of two different sizes is child's play. However, studying polymers endowed with an alternating nanostructure made of heterogeneous blocks is anything but straightforward.

Recommended for you

A new synthetic amino acid for an emerging class of drugs

14 hours ago

Swiss scientists have developed a new amino acid that can be used to modify the 3-D structure of therapeutic peptides. Insertion of the amino acid into bioactive peptides enhanced their binding affinity up to 40-fold. Peptides ...

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

User comments : 0