Novel hollow-core optical fiber to enable high-power military sensors

Aug 01, 2013
Hollow-core fiber assembly. Credit: OFS

The intensity of light that propagates through glass optical fiber is fundamentally limited by the glass itself. A novel fiber design using a hollow, air-filled core removes this limitation and dramatically improves performance by forcing light to travel through channels of air, instead of the glass around it. DARPA's unique spider-web-like, hollow-core fiber, design is the first to demonstrate single-spatial-mode, low-loss and polarization control—key properties needed for advanced military applications such as high-precision fiber optic gyroscopes for inertial navigation.

Although hollow-core fiber has been available from overseas suppliers for years, DARPA's ongoing Compact Ultra-Stable Gyro for Absolute Reference (COUGAR) program has brought design and production capacity inside the United States and developed it to a level that exceeds the state of the art.

A team of DARPA-funded researchers led by Honeywell International Inc. developed the technology. The hollow-core fiber is the first to include three critical performance-enabling properties:

  • Single-spatial-mode: light can take only a single path, enabling higher bandwidth over longer distances;
  • Low-loss: light maintains intensity over longer distances;
  • Polarization control: the orientation of the is fixed in the fiber, which is necessary for applications such as sensing, interferometry and secure communications.

Explore further: Nature's elegant and efficient vision systems can detect cancer

add to favorites email to friend print save as pdf

Related Stories

Researchers create novel optical fibers

Apr 17, 2013

(Phys.org) —Researchers at the University of Wisconsin-Milwaukee (UWM) have found a new mechanism to transmit light through optical fibers. Their discovery marks the first practical application of a Nobel-Prize-winning ...

Helicopter-light-beams: A new tool for quantum optics

May 27, 2013

A light wave oscillates perpendicular to its propagation direction – that is what students learn in school. However, scientists of the Vienna University of Technology (TU Vienna) now perform atom-physics ...

Recommended for you

Wireless sensor transmits tumor pressure

Sep 20, 2014

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation ...

Seeing through the fog (and dust and snow) of war

Sep 19, 2014

Degraded visibility—which encompasses diverse environmental conditions including severe weather, dust kicked up during takeoff and landing and poor visual contrast among different parts of terrain—often ...

The oscillator that could makeover the mechanical watch

Sep 18, 2014

For the first time in 200 years the heart of the mechanical watch has been reinvented, thereby improving precision and autonomy while making the watch completely silent. EPFL researchers have developed an ...

User comments : 0