Novel hollow-core optical fiber to enable high-power military sensors

Aug 01, 2013
Hollow-core fiber assembly. Credit: OFS

The intensity of light that propagates through glass optical fiber is fundamentally limited by the glass itself. A novel fiber design using a hollow, air-filled core removes this limitation and dramatically improves performance by forcing light to travel through channels of air, instead of the glass around it. DARPA's unique spider-web-like, hollow-core fiber, design is the first to demonstrate single-spatial-mode, low-loss and polarization control—key properties needed for advanced military applications such as high-precision fiber optic gyroscopes for inertial navigation.

Although hollow-core fiber has been available from overseas suppliers for years, DARPA's ongoing Compact Ultra-Stable Gyro for Absolute Reference (COUGAR) program has brought design and production capacity inside the United States and developed it to a level that exceeds the state of the art.

A team of DARPA-funded researchers led by Honeywell International Inc. developed the technology. The hollow-core fiber is the first to include three critical performance-enabling properties:

  • Single-spatial-mode: light can take only a single path, enabling higher bandwidth over longer distances;
  • Low-loss: light maintains intensity over longer distances;
  • Polarization control: the orientation of the is fixed in the fiber, which is necessary for applications such as sensing, interferometry and secure communications.

Explore further: Firm combines 3-D printing with ancient foundry method

add to favorites email to friend print save as pdf

Related Stories

Researchers create novel optical fibers

Apr 17, 2013

(Phys.org) —Researchers at the University of Wisconsin-Milwaukee (UWM) have found a new mechanism to transmit light through optical fibers. Their discovery marks the first practical application of a Nobel-Prize-winning ...

Helicopter-light-beams: A new tool for quantum optics

May 27, 2013

A light wave oscillates perpendicular to its propagation direction – that is what students learn in school. However, scientists of the Vienna University of Technology (TU Vienna) now perform atom-physics ...

Recommended for you

Firm combines 3-D printing with ancient foundry method

Mar 27, 2015

A century-old firm that's done custom metal work for some of the nation's most prestigious buildings has combined 3-D printing and an ancient foundry process for a project at the National Archives Building in Washington, ...

Wearable device helps vision-impaired avoid collision

Mar 26, 2015

People who have lost some of their peripheral vision, such as those with retinitis pigmentosa, glaucoma, or brain injury that causes half visual field loss, often face mobility challenges and increased likelihood ...

Applications of optical fibre for sensors

Mar 26, 2015

Mikel Bravo-Acha's PhD thesis has focused on the applications of optical fibre as a sensor. In the course of his research, conducted at the NUP/UPNA-Public University of Navarre, he monitored a sensor fitted to optical fibre ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.