Headbanging termites send out smoke signals

Aug 08, 2013 by Nicola Stead, The Company Of Biologists
Headbanging termites send out smoke signals

Communicating over long distances is difficult; for example, the sound of our voices can rarely be heard or understood further away than 100 m. Yet, long before the invention of the telephone or e-mail, humans were successfully communicating over hundreds of kilometres. Take, for example, the Great Wall of China, where soldiers alerted each other of an impending attack using smoke signals. Although this remarkable ability to communicate over long distances is said to be unique to humans, Wolfgang Kirchner and PhD student Felix Hager, from the University of Bochum, Germany, found out that some species of termites have also mastered the skill (p. 3249).

Kirchner explains that the African termite, Macrotermes natalensis, forms large colonies in subterranean mounds and operates on a caste system. The workers use the mound's maze of corridors to access the outside world to forage for food. As these outdoor excursions can take them over 10 m away from their colony, they are accompanied by another caste – the solider termites. In addition to protecting them, these soldiers will drum home warnings of an impending attack to the distant colony should a hungry aardvark appear.

Kirchner's initial work on termites' long-distance warnings began in the Ivory Coast but because of the political situation he decided travel to South Africa with Hager to carry on his work. As termites are difficult to find outside their colonies, the duo opened up the central chamber of a termite mound and used high-speed cameras to capture in detail how soldiers warn others of unwelcome intrusions. They saw the soldiers raising their heads upwards before bashing them into the ground at speeds of 1.5 m s?1. Using carefully embedded to detect vibrations, the duo found that the M. natalensis termites drummed their heads rapidly, 11 times per second. Each head bang generated vibrational pulses where the ground vibrated with acceleration amplitudes up to 0.7 m s?2; this approximately corresponds to a 70 nm movement at a frequency of 500 Hz.

'Once we had described the signal, the next step was to look at signal perception – what intensity does the signal have to have in order to be recognisable for another individual?' says Kirchner. To do this, they carefully placed termites into Petri dishes and measured their responses over a range of vibrational frequencies and displacements. They found the termites were most sensitive to frequencies around 500 Hz, as long as the movement of the dish's surface was more than 0.012 m s?2 (the equivalent of a miniscule 1–2 nm movement).

Satisfied that the soldiers were producing a vibrational signal that other termites could pick up, Kirchner says: 'We looked at how a signal is transmitted from the individual into the soil, how much is it attenuated with distance and how fast can it travel physically.' Mimicking a vibration pulse and placing accelerometers at set distances away from the signal, the team found that the vibrational wave could travel up to 171 m s?1. They found that the vibrations were attenuated by 0.4 dB cm?1 and calculated that after just 40 cm the ground would no longer vibrate enough for other to pick it up. However, drumming signals can be picked up at much further distances. Kirchner concludes that the only way this could occur is if there's social transmission of the signal. He likens it to a game of Chinese whispers, where one termite passes on the message to the next, and so forth. Only, in this case, the message is not distorted and it's drumming loud and clear – danger ahead!

Explore further: Scientists discover new 'transformer frog' in Ecuador

More information: Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. J Exp Biol 2013 216:3249-3256. ; DOI: 10.1242/jeb.086991 , http://jeb.biologists.org/content/216/17/3249.abstract

Related Stories

Biologists bore into Canadian termite invasion

Dec 20, 2012

Scientists at Western University have discovered why termites wreak havoc on megacities like Toronto and Paris and how new findings may lead to possible pest controls.  

Cells die so defensive organs can live

Aug 04, 2011

Researchers demonstrate for the first time that programmed cell death - a process by which cells deliberately destroy themselves - is involved in mandibular regression in termites. And it appears this regression may be the ...

Recommended for you

Scientists discover new 'transformer frog' in Ecuador

11 hours ago

It doesn't turn into Prince Charming, but a new species of frog discovered in Ecuador has earned the nickname "transformer frog" for its ability to change its skin from spiny to smooth in five minutes.

US gives threatened status to northern long-eared bat

13 hours ago

The federal government said Wednesday that it is listing the northern long-eared bat as threatened, giving new protections to a species that has been nearly wiped out in some areas by the spread of a fungal ...

Mice sing like songbirds to woo mates

14 hours ago

Male mice sing surprisingly complex songs to seduce females, sort of like songbirds, according to a new Duke study appearing April 1 in the Frontiers of Behavioral Neuroscience.

A new crustacean species found in Galicia

14 hours ago

One reason that tourists are attracted to Galicia is for its food. The town of O Grove (Pontevedra) is well known for its Seafood Festival and the Spider Crab Festival. A group of researchers from the University ...

Ants in space find it tougher going than those on Earth

16 hours ago

(Phys.org)—The results of a study conducted to see how well ants carry out their search activities in space are in, and the team that sent them there has written and published the results in the journal ...

Rats found able to recognize pain in other rat faces

16 hours ago

(Phys.org)—A team of researchers working in Japan with affiliations to several institutions in that country, has found that lab rats are able to recognize pain in the faces of other rats and avoid them ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.