Growth of disorder of electrons measured in dual temperature system

August 14, 2013
Growth of disorder of electrons measured in dual temperature system
The diagram of a measured sample. It includes two microscopic conductors (N and S); individual electrons can move between them. The electrons are controlled by an external voltage V_g, and the number of electrons in the conductor S can be read with the help of a single-electron transistor (SET).  Here is an electron microscope image with the parts corresponding to the diagram coloured in.

Researchers at Aalto University and the University of Tokyo have succeeded for the first time in experimentally measuring a probability distribution for entropy production of electrons.

Entropy production means an increase in disorder when electrons are moved individually between two microscopic conductors of differing temperatures.

The researchers also showed that a connection prevails between two definitions of entropy that have been used. The result is significant for the design of future . The study was published recently in the scientific journal Nature Physics.

Similar experiments have been conducted before, but this is the first time that researchers have used conductors at different temperatures to measure the entropy production of electrons.

'Entropy production is defined either by the time when the shift takes place or by the heat that moves from one conductor to another. In the study we measured electronic entropy production according to both definitions. The change in entropy in an individual measurement is random: the distribution for production is acquired by repeating the process about 100,000 times, for instance. Both distributions follow the so-called fluctuation relation', says doctoral student Jonne Koski.

An example of a measurement. Changing the voltage (green line) causes electrons to move between the conductors. Electron transfers are seen as changes in the detector's signal (black line).

Fluctuation relations are relatively of thermodynamics and . When the probability to produce a certain amount of disorder of electrons, or entropy, is precisely known, the fluctuation relation is an equation, which gives a probability for the decrease in the amount of entropy. Therefore, the degree of disorder of electrons can decline when the nanostructures are examined for short periods of time.

'Entropy production leads to overheating in the , which is why it is important to get more information on their heat transmission properties', observes Professor Jukka Pekola.

Explore further: Cosmic entropy could be 100 times greater than previously thought

More information:

Related Stories

Recommended for you

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...

Professor solves 140-year fluid mechanics enigma

October 7, 2015

A Purdue University researcher has solved a 140-year-old enigma in fluid mechanics: Why does a simple formula describe the seemingly complex physics for the behavior of elliptical particles moving through fluid?

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.