Growth of disorder of electrons measured in dual temperature system

August 14, 2013
Growth of disorder of electrons measured in dual temperature system
The diagram of a measured sample. It includes two microscopic conductors (N and S); individual electrons can move between them. The electrons are controlled by an external voltage V_g, and the number of electrons in the conductor S can be read with the help of a single-electron transistor (SET).  Here is an electron microscope image with the parts corresponding to the diagram coloured in.

Researchers at Aalto University and the University of Tokyo have succeeded for the first time in experimentally measuring a probability distribution for entropy production of electrons.

Entropy production means an increase in disorder when electrons are moved individually between two microscopic conductors of differing temperatures.

The researchers also showed that a connection prevails between two definitions of entropy that have been used. The result is significant for the design of future . The study was published recently in the scientific journal Nature Physics.

Similar experiments have been conducted before, but this is the first time that researchers have used conductors at different temperatures to measure the entropy production of electrons.

'Entropy production is defined either by the time when the shift takes place or by the heat that moves from one conductor to another. In the study we measured electronic entropy production according to both definitions. The change in entropy in an individual measurement is random: the distribution for production is acquired by repeating the process about 100,000 times, for instance. Both distributions follow the so-called fluctuation relation', says doctoral student Jonne Koski.

An example of a measurement. Changing the voltage (green line) causes electrons to move between the conductors. Electron transfers are seen as changes in the detector's signal (black line).

Fluctuation relations are relatively of thermodynamics and . When the probability to produce a certain amount of disorder of electrons, or entropy, is precisely known, the fluctuation relation is an equation, which gives a probability for the decrease in the amount of entropy. Therefore, the degree of disorder of electrons can decline when the nanostructures are examined for short periods of time.

'Entropy production leads to overheating in the , which is why it is important to get more information on their heat transmission properties', observes Professor Jukka Pekola.

Explore further: Cosmic entropy could be 100 times greater than previously thought

More information:

Related Stories

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.