Grapefruit biomolecules may herald new treatment for heart disease

August 13, 2013

New research published in the Biochemical Journal has identified molecules occurring naturally in fruit that may play an important role in the future treatment of heart disease.

Molecules called flavanoids, which are found in - particularly grapefruit - have proven effective at reducing the inflammation which can lead to deadly cardiovascular disease. These molecules may hold the key to the development of a new generation of anti-inflammatory drugs which are cheaper, easier to produce and less toxic than current therapies.

Despite the widespread use of a range of new drugs that combat blood pressure and lower cholesterol, cardiovascular disease is still recognised as the number one cause of death globally and incidences are increasing. The World Health Organisation (WHO) estimates that the number of people who will die from cardiovascular diseases each year will reach 23.3 million by 2030.

Many diseases of the circulatory system are linked to the improper activation of immune cells, which then stick to the so called vascular endothelial cells (VECs) that line the blood vessels. This can begin a process of excessive inflammation through the local production of immune molecules, blocking the blood vessels and causing deadly cardiovascular disease.

A team of researchers from the University of Glasgow's Institute of Molecular, Cell and Systems Biology identified a range of plant-derived small molecules that activate the natural defences in VECs, thereby inhibiting the processes triggered by that lead to excessive inflammation. Derivatives of the flavanoid, naringenin, were shown to effectively inhibit the triggered following activation of the receptor for immune molecule IL6 on the surface of VECs.

Dr Stephen Yarwood, PI of the research team at the University of Glasgow, said: "We were surprised to find that flavanoids isolated from citrus fruits were very effective at reprogramming the response of to immune molecules by switching on genes that exert a natural, "protective" effect against inflammation. Our job now is to find out how flavanoids turn on these protective genes, which will pave the way for the development of future medicines to treat cardiovascular disease. "

Drugs with similar actions to plant-derived flavanoids would be cheap to produce and have low toxicity, which gives them certain advantages over current therapies. For example, current anti—IL6 drugs are expensive to produce and store, have a limited shelf life and require regular injections to be effective.

More information: You can read the full research paper on the Biomedical Journal website: www.biochemj.org/bj/454/bj4540283.htm

Listen to Stephen Yarwood discussing his latest paper on novel molecular actions of the flavonoids naringenin and flavone as effective inducers of SOCS3 gene induction and suppressors of STAT3 signalling in vascular endothelial cells.

Related Stories

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.