The 'genetics of sand' may shed new light on evolutionary process over millions of years

Aug 09, 2013
The 'genetics of sand' may shed new light on evolutionary process over millions of years
This image shows a close-up of planktonic foraminifera. Credit: The University of Southampton

An evolutionary ecologist at the University of Southampton, is using 'grains of sand' to understand more about the process of evolution. Dr Thomas Ezard is using the fossils of microscopic aquatic creatures called planktonic foraminifera, often less than a millimetre in size, which can be found in all of the world's oceans. The remains of their shells now resemble grains of sand to the naked eye and date back hundreds of millions of years.

A new paper by Dr Ezard, published today (9 August 2013) in the journal Methods in Ecology & Evolution, opens the debate on the best way to understand how new species come into existence (speciation). The debate concerns whether records such as those of the planktonic foraminifera, contain useful evidence of speciation over and above the molecular study of . Molecular evolution traditionally uses evidence from species that are alive today to determine what their ancestors may have looked like, whereas this new research promotes the importance of using fossil records in conjunction with the molecular models.

Dr Ezard, from Biological Sciences and the Institute for Life Sciences at Southampton, says: "Because planktonic foraminifera have been around for many millions of years and rocks containing groups of their species can be dated precisely, we can use their fossils to see evidence of how species evolve over time. We can also see how differences between individual members of species develop and, in theory, how a new species comes into existence.

This video is not supported by your browser at this time.

"The controversial hypothesis we test is that the processes leading to a new species coming into existence provoke a short, sharp burst of rapid genetic change. This is controversial because it is very difficult to detect these new species coming into existence accurately without the fossil data; it is more commonly determined from assumptions made from the study of species alive today using molecular evidence."

In the paper, Dr Ezard and colleagues, Dr Gavin Thomas from the University of Sheffield and Professor Andy Purvis from Imperial College London, highlight the importance of using fossil and molecular evidence to study evolution. Their intention is that the use of both types of data will become widespread in the future study of evolution. To support his research, Dr Ezard has received an Advanced Fellowship from the Natural Environment Research Council (NERC) to study how variation among individuals generates variation among . He will conduct this interdisciplinary research in the Centre for Biological Sciences at the University, in close collaboration with researchers from Ocean and Earth Science at the National Oceanography Centre, Southampton.

Explore further: A clear, molecular view of how human color vision evolved

Related Stories

New study sheds light on dinosaur size

Dec 19, 2012

Dinosaurs were not only the largest animals to roam the Earth - they also had a greater number of larger species compared to all other back-boned animals - scientists suggest in a new paper published in the journal PLOS ON ...

Recommended for you

Contrasting views of kin selection assessed

Dec 17, 2014

In an article to be published in the January issue of BioScience, two philosophers tackle one of the most divisive arguments in modern biology: the value of the theory of "kin selection."

Microbiome may have shaped early human populations

Dec 16, 2014

We humans have an exceptional age structure compared to other animals: Our children remain dependent on their parents for an unusually long period and our elderly live an extremely long time after they have ...

DNA sheds light on why largest lemurs disappeared

Dec 16, 2014

Ancient DNA extracted from the bones and teeth of giant lemurs that lived thousands of years ago in Madagascar may help explain why the giant lemurs went extinct. It also explains what factors make some surviving ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.