Fuel cell innovation: Novel cathode materials with high performance and strong reliability at intermediate temperature

Aug 13, 2013
Fuel cell innovation by Korean researchers
Prof. Guntae Kim. Credit: UNIST

Research team of Ulsan National Institute of Science and Technology (UNIST), Georgia Institute of Technology, and Dong-Eui University developed a novel cathode material which has outstanding performance and robust reliability even at the intermediate temperature range.

This research was published in Scientific Reports on August 13.

As high devices, fuel cells can convert directly into electric power very efficiently and environmentally friendly. Solid oxide fuel cells (SOFCs), based on an oxide ion conducting , have several advantages over other types of fuel cells, including relatively inexpensive material costs, low sensitivity to impurities in the fuel, and high overall efficiency.

To make SOFC technology more affordable, the operating temperature must be further reduced so that substantially less expensive materials may be used for the cell components. Also there will be more choices of materials for other components with lower operating temperature.

However, at the low operating temperature, the problem is that the efficiency drop by the cathode is especially dramatic than the one due to the and/or electrolyte. It means that the cathode, as a key component of SOFC, contributes the most to the polarization loss during intermediate temperature operation. As a result, the development of feasible low temperature SOFCs requires the generation of highly efficient cathode materials.,

A UNIST research team tried to co-dope Sr and Fe and succeeded in yielding remarkable out-performance to present materials at lower operating temperature. The optimized composition has facilitated excellent oxygen reduction reaction and the novel structure has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions.

"The hardest part of this research was finding optimum composition of Sr and Fe for the best performance and robustness," said Prof. Kim. "Previously various researches trying to dope Sr to perovskite structure had been made by many other groups. But none of them was successful for the better performance at the low operating temperature."

The new material developed by the UNIST research team led by Prof. Guntae Kim, could be used at significantly low temperature SOFC with higher efficiency and solid reliability than the previously reported materials.

This new novel enables the fuel cell designers have more flexible choices on the materials of fuel , which leads to the lower fuel cell cost and, finally, to the step closer to the highly efficient and reliable fuel cells.

Explore further: Simulations for better transparent oxide layers

More information: Highly Efficient and robust cathode materials for low-temperature solid fuel cells: PrBa0.5Sr0.5Co2-xFexO5+?, Scientific Reports, 2013.

add to favorites email to friend print save as pdf

Related Stories

Fuel cells operating directly on ethanol

Jun 06, 2012

(Phys.org) -- Researchers at the Center for Energy Research at UC San Diego recently demonstrated the best performance for solid oxide fuel cells (SOFCs) operating directly on ethanol without external reformation. ...

X-rays reveal fuel cells in action

Jun 03, 2013

(Phys.org) —Wouldn't it be great to have a magical "energy box" that could convert a wide array of fuels to electricity with high efficiency and lower emissions? Solid oxide fuel cells (SOFCs) show significant ...

Recommended for you

Simulations for better transparent oxide layers

13 hours ago

Touchscreens and solar cells rely on special oxide layers. However, errors in the layers' atomic structure impair not only their transparency, but also their conductivity. Using atomic models, Fraunhofer ...

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

User comments : 0