Fermi telescope celebrates five years in space, enters extended mission

Aug 21, 2013
This view shows the entire sky at energies greater than 1 GeV based on five years of data from the LAT instrument on NASA's Fermi Gamma-ray Space Telescope. Brighter colors indicate brighter gamma-ray sources. Credit: NASA/DOE/Fermi LAT Collaboration

(Phys.org) —During its five-year primary mission, NASA's Fermi Gamma-ray Space Telescope has given astronomers an increasingly detailed portrait of the universe's most extraordinary phenomena, from giant black holes in the hearts of distant galaxies to thunderstorms on Earth.

But its job is not done yet. On Aug. 11, Fermi entered an extended phase of its mission—a deeper study of the high-energy cosmos. This is a significant step toward the science team's planned goal of a decade of observations, ending in 2018.

"As Fermi opens its second act, both the spacecraft and its instruments remain in top-notch condition and the mission is delivering outstanding science," said Paul Hertz, director of NASA's astrophysics division in Washington.

Fermi has revolutionized our view of the universe in gamma rays, the most energetic form of light. The observatory's findings include new insights into many high-energy processes, from rapidly , also known as pulsars, within our own galaxy, to jets powered by in far-away young galaxies.

The Large Area Telescope (LAT), the mission's main instrument, scans the entire sky every three hours. The state-of-the-art detector has sharper vision, a wider field of view, and covers a broader energy range than any similar instrument previously flown.

"As the LAT builds up an increasingly detailed picture of the gamma-ray sky, it simultaneously reveals how dynamic the universe is at these energies," said Peter Michelson, the instrument's principal investigator and a professor of physics at Stanford University in California.

Fermi's secondary instrument, the Gamma-ray Burst Monitor (GBM), sees all of the sky at any instant, except the portion blocked by Earth. This all-sky coverage lets Fermi detect more gamma-ray bursts, and over a broader energy range, than any other mission. These explosions, the most powerful in the universe, are thought to accompany the birth of new stellar-mass black holes.

"More than 1,200 gamma-ray bursts, plus 500 flares from our sun and a few hundred flares from highly magnetized neutron stars in our galaxy have been seen by the GBM," said principal investigator Bill Paciesas, a senior scientist at the Universities Space Research Association's Science and Technology Institute in Huntsville, Ala.

The instrument also has detected nearly 800 gamma-ray flashes from thunderstorms. These fleeting outbursts last only a few thousandths of a second, but their emission ranks among the highest-energy light naturally occurring on Earth.

One of Fermi's most striking results so far was the discovery of giant bubbles extending more than 25,000 light-years above and below the plane of our galaxy. Scientists think these structures may have formed as a result of past outbursts from the black hole—with a mass of 4 million suns—residing in the heart of our galaxy.

To build on the mission's success, the team is considering a new observing strategy that would task the LAT to make deeper exposures of the central region of the Milky Way, a realm packed with pulsars and other high-energy sources. This area also is expected to be one of the best places to search for gamma-ray signals from dark matter, an elusive substance that neither emits nor absorbs visible light. According to some theories, dark matter consists of exotic particles that produce a flash of when they interact.

"Over the next few years, major new astronomical facilities exploring other wavelengths will complement Fermi and give us our best look yet into the most powerful events in the universe," said Julie McEnery, the mission's project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership. Goddard manages the mission. The telescope was developed in collaboration with the U.S. Department of Energy's Office of Science, with contributions from academic institutions and partners in the United States, France, Germany, Italy, Japan, and Sweden.

Explore further: Astronomer confirms a new "Super-Earth" planet

add to favorites email to friend print save as pdf

Related Stories

Fermi's motion produces a study in spirograph

Feb 27, 2013

(Phys.org)—NASA's Fermi Gamma-ray Space Telescope orbits our planet every 95 minutes, building up increasingly deeper views of the universe with every circuit. Its wide-eyed Large Area Telescope (LAT) sweeps ...

Fermi and Swift see 'shockingly bright' burst

May 03, 2013

A record-setting blast of gamma rays from a dying star in a distant galaxy has wowed astronomers around the world. The eruption, which is classified as a gamma-ray burst, or GRB, and designated GRB 130427A, ...

600 mysteries in the night sky

Oct 19, 2011

NASA's Fermi team recently released the second catalog of gamma-ray sources detected by their satellite's Large Area Telescope (LAT). Of the 1873 sources found, nearly 600 are complete mysteries. No one knows ...

Recommended for you

Image: Multicoloured view of supernova remnant

7 hours ago

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

7 hours ago

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

8 hours ago

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

Image: Horsehead nebula viewed in infrared

8 hours ago

Sometimes a horse of a different color hardly seems to be a horse at all, as, for example, in this newly released image from NASA's Spitzer Space Telescope. The famous Horsehead nebula makes a ghostly appearance ...

The Milky Way's new neighbour

8 hours ago

The Milky Way, the galaxy we live in, is part of a cluster of more than 50 galaxies that make up the 'Local Group', a collection that includes the famous Andromeda galaxy and many other far smaller objects. ...

Image: Hubble sweeps a messy star factory

9 hours ago

This sprinkle of cosmic glitter is a blue compact dwarf galaxy known as Markarian 209. Galaxies of this type are blue-hued, compact in size, gas-rich, and low in heavy elements. They are often used by astronomers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.