Family matters: Evolutionary relationships among species of 'magic' mushrooms shed light on fungi

Aug 06, 2013

"Magic" mushrooms are well known for their hallucinogenic properties. Until now, less has been known about their evolutionary development and how they should be classified in the fungal Tree of Life. New research helps uncover the evolutionary past of a fascinating fungi that has wide recreational use and is currently under investigation for a variety of medicinal applications.

In the 19th century, the discovery of hallucinogenic mushrooms prompted research into the mushrooms' taxonomy, biochemistry, and historical usage. Gastón Guzmán, a world authority on the Psilocybe, began studying its taxonomy in the 1950s. In 1983, these studies culminated in a , which is currently being updated as a team of researchers from the University of Guadalajara and the University of Tennessee collaborate with Guzmán to produce a hypothesis on how these mushrooms evolved. Some of their latest research is now published in the journal Botany.

Using new molecular and , the team has produced the first multi-gene evaluation of the of Psilocybe, which constitutes a major step in classifying and naming "magic" mushrooms. Earlier work showed that species of Psilocybe did not commonly descend from a single ancestor. As a result, the hallucinogenic species (the genus Psilocybe) were typically separated from their non-hallucinogenic relatives (the genus Deconica). But this new work now places the two separate monophyletic—meaning developed from a single ancestor—groups into different families. Within Psilocybe (family Hymenogastraceae) and Deconica (family Strophariaceae s.str), the authors have discovered several strong infrageneric relationships.

According to the authors, their analysis of various of the mushrooms suggests that these typically weren't acquired through a most recent and must have evolved independently or undergone several evolutionary losses, probably for ecological reasons. Nevertheless, species of Psilocybe are united to some degree because they have the psychedelic compound psilocybin and other secondary metabolites, or products of metabolism. The authors say that former Psilocybe species that lack these secondary metabolites could also be found in Deconica.

Explore further: Research helps steer mites from bees

More information: The paper, titled "Phylogenetic inference and trait evolution of the psychedelic mushroom genus Psilocybe sensu lato (Agaricales)," was published today in the journal Botany. www.nrcresearchpress.com/doi/a… 0.1139/cjb-2013-0070

add to favorites email to friend print save as pdf

Related Stories

Use of psychedelic drugs remains prevalent in the US

Apr 23, 2013

An article published in F1000Research, and approved for indexing in PubMed and other major bibliographical databases, estimates that there were approximately 32 million users of psychedelic drugs in the United States in 2010.

2 Calif. deaths from mushrooms despite warnings

Nov 11, 2012

(AP)—The deaths of two residents of a Northern California assisted living facility and the hospitalization of four others come despite warnings from health officials not to eat mushrooms picked in the wild.

Recommended for you

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

Bird brains more precise than humans'

Sep 19, 2014

(Phys.org) —Birds have been found to display superior judgement of their body width compared to humans, in research to help design autonomous aircraft navigation systems.

User comments : 0