An energy-efficiency lead for nitrogen fertilizer production

Aug 16, 2013
Figure 1: Worldwide production of nitrogen fertilizer for agriculture exceeds 100 million tons a year. Credit: iStockphoto/Thinkstock

Nitrogen and phosphorus fertilizers are essential in modern agriculture and crucial to meeting the ever-growing global food demand. Nitrogen fertilizer, in the form of ammonia, is produced now in the same way that it has been for close to a century—by the energy-intensive Haber-Bosch process, which uses high temperatures and pressures to split nitrogen gas molecules. Takanori Shima, Zhaomin Hou and colleagues from the RIKEN Center for Sustainable Resource Science have now made a discovery that could allow ammonia and other nitrogen-bearing compounds to be produced energy-efficiently at room temperature.

Nitrogen gas (N2), comprised of a pair of , is abundant in the atmosphere, but converting it to a useful solid form by breaking the triple bond between the nitrogen atoms consumes considerable energy. Chemists have had difficulty finding ways to break the triple bond at mild temperatures without resorting to special electron- and proton-donating reagents, which are generally nonrecyclable and expensive.

Hou and his colleagues instead considered multinuclear transition metal hydrides—cage-like compounds in which several metals are linked together by multiply bonded . These hydrides can generate sufficient electrons to break the triple bond and also act as a hydrogen source for the fixation of nitrogen as ammonia. The team also suspected that the metal centers could enhance N2 activation through cooperative effects seen in and the Haber-Bosch process.

Drawing on their expertise in rare-earth hydrides, the researchers produced a novel complex based on titanium—a transition metal that readily forms nitrogen bonds. Their experiments involved mixing the titanium precursor with hydrogen gas and N2 in a pressure reactor at room temperature. Rather than the pure they expected, the reaction produced a strained cubic structure containing four bridged titanium hydrides and, intriguingly, a pair of nitrogen–proton (N–H) units.

To understand how this complex formed, the team went back and monitored each step of the reaction using x-ray crystallography and isotope-labeled spectroscopy. They determined that N2 was activated and cleaved by binding simultaneously to three titanium atoms, and that the hydrides migrated from titanium to the nitrogen portion of the complex. "This is unprecedented, to observe N2 activation, bond cleavage and N–H bond formation steps in one reaction," says Shima.

Although the researchers are still investigating why the trinuclear titanium complex has such particular affinity for N2 compounds, they are certain that these materials will provide a unique opportunity to develop innovative nitrogen fixation strategies.

Explore further: New process can convert human-generated waste into fuel in space

More information: Shima, T., et al. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex, Science 340, 1549–1552 (2013). dx.doi.org/10.1126/science.1238663

add to favorites email to friend print save as pdf

Related Stories

Direct nitrogen fixation for low cost energy conversion

Jul 23, 2013

A simple, low-cost and eco-friendly method of creating nitrogen-doped graphene nanoplatelets (NGnPs), which could be used in dye-sensitized solar cells and fuel cells, is published in Scientific Reports today. ...

Converting Nitrogen to a More Useful Form

Jan 09, 2007

Nitrogen-containing organic compounds are important products as well as intermediates for many pharmaceuticals, agrochemicals, and chemicals used in electronics. Air contains plenty of nitrogen, but it is in a form that cannot ...

New way to break some of the strongest chemical bonds

Dec 16, 2009

(PhysOrg.com) -- Scientists at Cornell University in the U.S. have found a new way of breaking two of the strongest chemical bonds, at ambient temperature and pressure, and this breakthrough could lead to ...

Recommended for you

Electronic switches on the molecular scale

Nov 25, 2014

A molecular electronic switch is a junction created from individual molecules that can alternate between two or more stable states, making the switch act as a conductor or an insulator. These switches show ...

Mimicking photosynthesis with man-made leaves

Nov 25, 2014

Scientists have long been trying to emulate the way in which plants harvest energy from the sun through photosynthesis. Plants are able to absorb photons from even weak sunlight using light antennae made ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.