An earthquake in Japan caused large waves in Norwegian fjords

August 13, 2013

Early on a winter morning a few years ago, many residents of western Norway who lived or worked along the shores of the nation's fjords were startled to see the calm morning waters suddenly begin to rise and fall. Starting at around 7:15 local time and continuing for nearly 3 hours, waves up to 1.5 meters (about 5 feet) high coursed through the previously still fjord waters.

The scene was captured by and by people with cell phones, reported to local media, and investigated by a local newspaper. Drawing on this footage, and using a and observations from a nearby , Bondevik et al. identify the cause of the waves—the powerful magnitude 9.0 Tohoku earthquake that hit off the coast of Japan half an hour earlier.

In closed or semi-enclosed bodies of water, seismic waves can trigger known as "seiches." Seiching had not been recorded in Norway's fjords since 1950. Scientists have traditionally thought that seiching is caused by seismic surface waves, but the authors find that the fjord seiching was initiated before the surface waves had arrived.

Using seismic observations and a model for local fjord behavior, they find that in this case the seiching was triggered by S waves, which travel through Earth's body, and later was amplified by Love waves, which travel on Earth's surface. There are a lot of open questions surrounding the connection between earthquakes and seiching, but the authors' research supports the idea that not all earthquakes will cause seiching in all enclosed bodies of water. The occurrence of the Japanese earthquake?induced seiches depended on the period and orientation of the seismic waves aligning with the natural frequency and orientation of the body of water.

Explore further: In Japan, seismic waves slower after rain, large earthquakes

More information: Norwegian seiches from the giant 2011 Tohoku earthquake, Geophysical Research Letters, DOI: 10.1002/grl.50639, 2013 http://onlinelibrary.wiley.com/doi/10.1002/grl.50639/abstract

Related Stories

In Japan, seismic waves slower after rain, large earthquakes

March 5, 2012

An earthquake is first detected by the abrupt side-to-side jolt of a passing primary wave. Lagging only slightly behind are shear waves, which radiate out from the earthquake's epicenter and are seen at the surface as a rolling ...

Homing in on a potential pre-quake signal

August 2, 2012

In a new analysis of the 2004 magnitude 6.0 Parkfield earthquake in California, David Schaff suggests some limits on how changes measured by ambient seismic noise could be used as a pre-earthquake signal.

How to prevent earthquake damage: make buildings invisible

February 12, 2013

(Phys.org)—When an earthquake strikes, damage to buildings such as nuclear power stations can worsen the catastrophe. Researchers from France's Institut Fresnel and the French division of Menard, a ground-improvement specialist ...

Measuring the hazards of global aftershock

April 19, 2013

The entire world becomes an aftershock zone after a massive magnitude (M) 7 or larger earthquake—but what hazard does this pose around the planet? Researchers are working to extend their earthquake risk estimates over a ...

Researchers replicate supershear earthquakes in the lab

June 7, 2013

(Phys.org) —A team of geology researchers working in France has for the first time recreated the conditions in a lab that lead to a phenomenon known as a supershear earthquake. In their paper published in the journal Science, ...

Recommended for you

'Carbon sink' detected underneath world's deserts

July 28, 2015

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.