New compound prevents first steps of fungal infection

Aug 13, 2013
This image shows two forms of the yeast (fungus) C. albicans. At right, the cell is ovoid and harmless. At left, cell has entered the infectious, filamented state. Credit: Worcester Polytechnic Institute

Targeting serious and sometimes deadly fungal infections, a team of researchers at Worcester Polytechnic Institute (WPI) and the University of Massachusetts Medical School (UMMS) has discovered a chemical compound that prevents fungal cells from adhering to surfaces, which, typically, is the first step of the infection process used by the human pathogen Candida albicans (C. albicans).

After screening 30,000 in a series of tests with live C. albicans, the team found one molecule that prevented the yeast from adhering to or to polystyrene, a common plastic used in many medical devices. Named "filastatin" by the researchers, this molecule now emerges as a candidate for new anti-fungal drug development and as a potential protective material to embed on the surfaces of medical devices to prevent fungal infections.

The team, led by co- Paul Kaufman, PhD, professor of molecular medicine at UMMS, and Reeta Rao, PhD, associate professor of biology and biotechnology at WPI, reports its findings in the paper "Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis," published online in advance of print by the journal Proceedings of the National Academy of Sciences (PNAS).

"In humans, the most widespread is Candida albicans, which is also one of the most frequent causes of hospital-acquired infections," the authors write. "We conclude that filastatin is not toxic to the human cell line under our assay conditions, but is unique in that it can impair fungal adhesion both to inert surfaces and to cultured human epithelial cells."

Infection by C. albicans causes common like thrush and vaginitis, which affect millions of people globally each year and are not easily cleared by the handful of anti-fungal drugs now available. While most fungal infections do not cause serious harm, if one spreads to the bloodstream it can be deadly.

Hospitalized patients with catheters or central intravenous lines are at risk as the fungi can grow on those devices and enter the body. Similarly, patients with implanted medical devices like pacemakers or prosthetic hips or knees are also at risk if the implant carries a fungus into the body. Also, people with compromised immune systems are at greater risk for serious fungal infections. Because of the lack of effective drugs against C. albicans and other pathogenic fungi, the mortality rate for systemic fungal infections is between 30 and 50 percent.

Typically, a blood stream infection of C. albicans or a similar pathogen begins with fungal cells attaching to a surface—a catheter, for example, or epithelial cells lining the mouth—to form what is known as a biofilm. Next, the ovoid shaped yeast cells morph into an invasive filamentous form, extending pointed filaments that penetrate and damage surrounding tissues. In the current study, the team found that filastatin curtailed both steps: it largely prevented C. albicans from adhering to various surfaces, and it significantly reduced filamentation (inspiring the name filastatin).

As a next step, the team tested filastatin's impact on C. albicans cells that had grown unfettered in test wells and had already adhered to the polystyrene walls. When the compound was added to the culture mix, it knocked off many of the already stuck to the polystyrene. The inhibitory effects of filastatin were further tested on human lung cells, mouse vaginal cells, and live worms (C. elgans) exposed to the fungus to see if it would reduce adhesion and infection. In all cases, the novel small molecule had significant protective effects without showing toxicity to the host tissues.

Research is now focused on teasing out the precise molecular mechanisms filastatin uses to prevent adhesion and filamentation. "We need to find the target of this molecule," Rao said. "We have some good leads, and the fact that we aren't seeing toxicity with host cells is very encouraging, but there is more work to be done."

Additional studies on filastatin are underway at both WPI and UMMS. "The molecule affects multiple clinically relevant species, so we're pursuing the idea that it provides a powerful probe into what makes these organisms efficient pathogens," Dr. Kaufman said. "In this era of budget gridlock in Washington, our ability to get funding from the Center for Clinical and Translational Research at UMMS to support this work was essential for allowing us to pursue our ideas for novel ways to approach this important class of hospital-acquired infections."

The project was also funded by a grant from a WPI/UMMS pilot program established to promote collaborations between researchers at the universities to advance early stage translational research. "Joint research programs, such as the pilot program between our institutions, are central to WPI's work in the life sciences," said Michael Manning, PhD, associate provost for research ad interim, at WPI. "As this collaboration between Professors Rao and Kaufman demonstrates so well, both institutions can leverage their complementary expertise for the ultimate advancement of scientific discovery and public health."

Terence R. Flotte, MD, UMMS executive deputy chancellor, provost, and dean of the School of Medicine, agreed. "The faculty of UMass Medical School and WPI possess scientific knowledge and expertise in disciplines that complement each other," he said. "The creation of this type of multidisciplinary team collaboration between the two universities allows us to work synergistically to solve problems important for improving human health."

Explore further: Fungal biology: Finding yeast's better half

Related Stories

How a common fungus knows when to attack

Jul 24, 2012

The opportunistic fungal pathogen Candida albicans inconspicuously lives in our bodies until it senses that we are weak, when it quickly adapts to go on the offensive. The fungus, known for causing yeast and other minor ...

Discovery: Yeast make plant hormone that speeds infection

May 26, 2010

In their ongoing studies of how yeast (fungi) can infect a host and cause disease, a research team at the Life Sciences and Bioengineering Center at Worcester Polytechnic Institute (WPI) has made an unexpected ...

Fighting fungal infections with bacteria

May 01, 2010

A bacterial pathogen can communicate with yeast to block the development of drug-resistant yeast infections, say Irish scientists writing in the May issue of Microbiology. The research could be a step toward ...

Fungal biology: Finding yeast's better half

Jul 31, 2013

Scientists long believed that the fungal pathogen Candida albicans was incapable of producing haploid cells—which contain only one copy of each chromosome, analagous to eggs and sperm—for mating. Mixing ...

Researchers take aim at hard-to-treat fungal infections

Nov 19, 2009

A team of researchers at the Worcester Polytechnic Institute Life Sciences and Bioengineering Center at Gateway Park has developed a new model system to study fungal infections. The system can be a powerful ...

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

13 hours ago

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Building better soybeans for a hot, dry, hungry world

Apr 16, 2014

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

User comments : 0

More news stories

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.