New component in the quantum electronics toolbox

Aug 29, 2013
Quantum electronics with atoms and superconductors: Rubidium atoms are magnetically suspended above a superconducting microchip, creating a new interface between superconducting nanoelectronics and the atoms. This means the advantages of both systems may be harnessed to process, transfer and store quantum information. Credit: CQ Center for Collective Quantum Phenomena/University of Tübingen

The coherence of quantum systems is the foundation upon which hardware for future information technologies is based. Quantum information is carried by units called quantum bits, or qubits. They can be used to secure electronic communications – and they enable very fast searches of databases. But qubits are also very unstable. Professors József Fortágh, Dieter Kölle and Reinhold Kleiner of Tübingen's Institute of Physics have developed a new electronic component which will help to deal with this problem. The researchers' long-term goal is to process, transfer and store superposition states such as the overlapping of the binary digits zero and one. The initial results of their work are to be published in the journal Nature Communications on 29 August 2013.

The researchers aim to link two systems and draw on the advantages of both. Superconducting circuits, which are structured on microchips using standard technology, can process quickly but cannot store it for very long. By contrast, atoms, nature's smallest , can serve as a natural quantum storage unit. "In the future, this combination will allow us to transfer information from into ensembles of atoms and store it," says Professor József Fortágh.

The atoms are trapped in a magnetic field above the surface of the microchip. Because superconductors allow an electric current to flow without resistance, the current does not become weaker in a superconducting ring. Institute of Physics PhD students Helge Hattermann and Daniel Bothner along with postdoctoral researcher Simon Bernon have made use of this to construct a complex superconducting ring-circuit and a particularly stable storage space for atoms. And the researchers can test how long atoms remain in the quantum superposition states within the system – by using the atoms themselves as a clock.

Today's definition of a second is given to us by the caesium atom, with a frequency of approximately nine billion Hertz per second, corresponding to the transition between its two ground states. Rubidium, the atom used for the experiments in Tübingen, is a secondary frequency standard. An atomic clock's precision is based on the constant transition between quantum states. Just like the swinging of the pendulum of a grandfather clock, an atomic clock's oscillations become weaker with time – when the quantum superpositions decay.

The atomic clock integrated into the superconducting chip indicates that the atoms suspended above the chip remain in their states for several seconds. By comparison, solid-state quantum storage retains coherence for only microseconds. "This result paves the way for new quantum electronic components for information processing systems," József Fortágh says. The researchers at the University of Tübingen's CQ Center for Collective Quantum Phenomena are now planning experiments on atoms in superconducting microwave resonators – which could serve as a shuttle for data between integrated circuits and atoms.

Explore further: The importance of three-way atom interactions in maintaining coherence

More information: Bernon, S. et al. Manipulation and coherence of ultra-cold atoms on a superconducting atom chip, Nature Communications, Online-Veröffentlichung. DOI: 10.1038/ncomms3380

Related Stories

Towards hybrid quantum systems

May 16, 2012

EU-funded scientists made advances in the development of a hybrid quantum system (HQS) by combining different quantum technologies.

New method to generate Laughlin states with atomic systems

Jul 03, 2013

In 1998, the Nobel Prize in Physics was conferred to the discovery of a new type of quantum fluid with fractional charge excitations, known as Laughlin state. The production of this quantum state, which explains the behaviour ...

Noise is not necessarily detrimental to quantum devices

Feb 04, 2013

The researches of the Aalto University and the University of Oulu have succeeded to simulate a phenomenon called motional averaging, which demonstrates that in certain conditions externally-induced fast fluctuations ...

Recommended for you

Finding faster-than-light particles by weighing them

8 hours ago

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

World's most complex crystal simulated

Dec 24, 2014

The most complicated crystal structure ever produced in a computer simulation has been achieved by researchers at the University of Michigan. They say the findings help demonstrate how complexity can emerge ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.