Chemistry team creates spontaneously forming supramolecular nanotube yarn

Aug 30, 2013 by Bob Yirka report
Chemistry team creates spontaneously forming supramolecular nanotube yarn

(Phys.org) —A team of chemists from the Chinese Academy of Sciences in Beijing has created an alternative to carbon nanotubes. In their paper published in the journal Advanced Materials, the researchers describe how they built a supramolecular yarn from monomers that is as strong as polypropylene, a common plastic.

Because of the myriad ways they can be used, scientists have dedicated a lot of effort to creating yarn-like materials that are strong, soft, flexible and can be created in virtually any length. Carbon nanotubes have been the focus of a lot of that research, and for good reason—scientists believe they may one day form the basis of such exotic structures as a . But that day hasn't yet arrived, and for that reason, researchers continue to look at other materials that may prove just as useful. In this new effort, the research team in China has discovered a way to make yarn out of carbon and other monomers that form threads that combine to form a type of yarn when pulled or spun.

The threads were made by mixing (molecules that bind chemically with other molecules) to form threads made of carbon with histidine (an amino acid) serving as the handles on either end. They found the threads formed into flat paper-like materials when submersed in an alkaline solution which then spontaneously rolled themselves up into tubes—each just 40nm in diameter. They also found that if they poked a pin into the solution and then slowly pulled it back out again, the material could be drawn out into a continuous thread which could then be intertwined to form a yarn-like material. When using a spinning spool, the researchers found they could extract yarn segments as long as several meters. After drying, the researchers found the yarn was approximately the same strength as ordinary plastics.

Because the individual threads are so small (and bio friendly) the team envisions micro based research efforts using the threads as platforms for growing cells and possibly even being used to help restore functionally to people with nerve damage. The team plans to further their research to determine if they can build other types of yarns using the same basic technique.

Explore further: Hybrid carbon nanotube yarn muscle

More information: Self-Assembled Supramolecular Nanotube Yarn, Advanced Materials, Article first published online: 13 Aug 2013. DOI: 10.1002/adma.201302345

Abstract
Metric length supramolecular nanotube yarns are fabricated though a spinning process from the diluted aqueous solution of self-assembled nanotubes, with bolaamphiphiles working as molecular building blocks. These non-covalent bonding based nanotube yarns show outstanding mechanical strength compared with some conventional polymers and could be operated under the macro conditions.

Related Stories

Hybrid carbon nanotube yarn muscle

May 30, 2013

Professor Seon Jeong Kim of Hanyang University has created a high capacity yarn muscle that does not require electrolytes or special packaging. It will have a big impact in the motor, biological and robot ...

Saws made of carbon

Aug 01, 2013

More material could be saved when manufacturing wafers in future. Ultra-thin saws made of carbon nanotubes and diamond would be able to cut through silicon wafers with minimum kerf loss. A new method makes ...

Taming carbon nanotubes

Feb 07, 2011

Carbon nanotubes have many attractive properties, and their structure and areas of application can be compared with those of graphene, the material for whose discovery the most recent Nobel Prize was awarded. In order to ...

Researchers unravel secrets of mussels' clinginess

Jul 23, 2013

Unlike barnacles, which cement themselves tightly to the surfaces of rocks, piers or ships, the clamlike bivalves called mussels dangle more loosely from these surfaces, attached by a collection of fine filaments ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

14 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NikFromNYC
1 / 5 (4) Aug 30, 2013
Delightful movie of the pulling process:

http://onlinelibr...d3f20032

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.