Breakthrough in memory technologies could bring faster computing, smaller memory device

Aug 12, 2013

Memory devices like disk drives, flash drives and RAM play an important role in our lives. They are an essential component of our computers, phones, electronic appliances and cars. Yet current memory devices have significant drawbacks: dynamic RAM memory has to be refreshed periodically, static RAM data is lost when the power is off, flash memory lacks speed, and all existing memory technologies are challenged when it comes to miniaturization.

Increasingly, are a bottleneck limiting performance. In order to achieve a substantial improvement in computation speed, scientists are racing to develop smaller and denser memory devices that operate with high speed and low power consumption.

Prof. Yossi Paltiel and research student Oren Ben-Dor at the Hebrew University of Jerusalem's Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, together with researchers from the Weizmann Institute of Science, have developed a simple magnetization progress that, by eliminating the need for permanent magnets in memory devices, opens the door to many technological applications.

The research deals with the flow properties of carriers in memory devices. According to , in addition to their electrical charge, electrons also have a degree of internal freedom called spin, which gives them their magnetic properties. The new technique, called magnetless spin memory (MSM), drives a current through chiral material (a kind of abundantly available ) and selectively transfers electrons to magnetize nano magnetic layers or . With this technique, the researchers showed it is possible to create a magnetic-based memory device that does not require a , and which could allow for the miniaturization of down to a single nanoparticle.

The potential benefits of magnetless spin memory are many. The technology has the potential to overcome the limitations of other magnetic-based memory technologies, and could make it possible to create inexpensive, high-density universal memory-on-chip devices that require much less power than existing technologies. Compatible with integrated circuit manufacturing techniques, it could allow for inexpensive, high density universal memory-on-chip production.

According to the Hebrew University's Prof. Paltiel, "Now that proof-of-concept devices have been designed and tested, magnetless spin memory has the potential to become the basis of a whole new generation of faster, smaller and less expensive memory technologies."

The technology transfer companies of the Hebrew University (Yissum) and the Weizmann Institute of Science (Yeda) are working to promote the realization of this technology, by licensing its use and raising funds for further development and commercialization. With many possible applications, it has already attracted the attention of start-up funds.

Explore further: Samsung mass produces industry's first 8-gigabit DDR4 based on 20 nanometer process technology

More information: Mathew, S., Naaman, R. A chiral-based magnetic memory device without a permanent magnet, Nature Communications. www.nature.com/ncomms/2013/130… /abs/ncomms3256.html

Related Stories

Engineers develop new magnetoelectric computer memory

Dec 14, 2012

(Phys.org)—By using electric voltage instead of a flowing electric current, researchers from UCLA's Henry Samueli School of Engineering and Applied Science have made major improvements to an ultra-fast, high-capacity class ...

Recommended for you

Government ups air bag warning to 7.8M vehicles

23 minutes ago

The U.S. government is adding more than 3 million vehicles to a rare warning about faulty air bags that have the potential to kill or injure drivers or passengers in a crash.

Fighting cyber-crime one app at a time

45 minutes ago

This summer Victoria University of Wellington will be home to four Singaporean students researching cyber threats. The students have been working with Dr Ian Welch, a lecturer in Victoria's School of Engineering and Computer ...

Using sound to picture the world in a new way

1 hour ago

Have you ever thought about using acoustics to collect data? The EAR-IT project has explored this possibility with various pioneering applications that impact on our daily lives. Monitoring traffic density ...

User comments : 0