Study of bird feathers might lead to better colors in the future

August 6, 2013 by Brita Belli
Study of bird feathers might lead to better colors in the future
Hui Cao won a Guggenheim Fellowship last spring for her work in biologically inspired photonics. Credit: Brita Belli

Yale professor Hui Cao hopes to replicate the brilliant colors of bird feathers in the laboratory, in this case using lasers.

Cao, professor of , was one of 175 scholars, artists and scientists awarded a Guggenheim fellowship this past April for her work in biologically inspired photonics. The research honored by the fellowship deals with structural coloration—specifically the way that color is generated in nature, particularly in bird feathers, and how that might be replicated in the lab using biological to produce equally brilliant colors using lasers.

Cao has collaborated with several Yale faculty members on this research, including Richard Prum, the William Robertson Coe Professor of Ornithology, and Eric Dufresne, associate professor of mechanical engineering and materials science and director of the Center for Engineering Innovation and Design.

"We started by studying the color of bird feathers," says Cao, "and how birds produce such brilliant, ." The research team found that the color in bird feathers comes from combinations of nanostructures and pigments. A blue jay's blue, for instance, comes from nanostructures with melanin underneath; birds with brilliant white feathers have no such .

"We can take what we have learned from nature to make better ," says Cao. And, she adds: "If we learn how to make artificial colors using nanostructures rather than dyes, we can use environmentally friendly materials."

These artificial colors will have another desirable property—the colors will not fade. As part of her research, Cao studied pigment in 40 million-year-old fossil beetles and 47 million-year-old moths whose coloring had remained intact. Such fade-less, environmentally friendly colors hold great potential for a range of commercial products, including cars, house paint, cosmetics and clothing, as well as holding promising applications for artists. Cao says these biologically-inspired colors may also be used in digital displays, allowing for Kindle and other mobile devices to display that don't alter with the viewing angle.

Currently, Cao's group has applied her findings to two-dimensional structures. Next, they will work on creating a three-dimensional bio-inspired laser. To create it, they intend to use bird feather barbs as a template and infuse an active material. Once the biomaterials are removed, the laser will produce brilliant color in all directions.

Explore further: Bird Feathers Produce Color Through Structure Similar to Beer Foam

Related Stories

Birds' eye view is far more colorful than our own

June 23, 2011

The brilliant colors of birds have inspired poets and nature lovers, but researchers at Yale University and the University of Cambridge say these existing hues represent only a fraction of what birds are capable of seeing.

Feathers show their true colors

May 11, 2012

(Phys.org) -- For millennia birds have been prized, even hunted, for their beautiful plumage but what makes their feathers so colorful?

True colors of some fossil feathers now in doubt (w/ Video)

March 28, 2013

(Phys.org) —Geological processes can affect evidence of the original colors of fossil feathers, according to new research by Yale University scientists, who said some previous reconstructions of fossil bird and dinosaur ...

Research sheds light on how patterns form in bird feathers

April 26, 2013

(Phys.org) —A new study by scientists in the U.S. and Taiwan has shown that birds have colorful and patterned feathers because of specific cellular interactions involving stem cells rather than through the direct involvement ...

Recommended for you

ATLAS and CMS experiments shed light on Higgs properties

September 1, 2015

Three years after the announcement of the discovery of a new particle, the so-called Higgs boson, the ATLAS and CMS Collaborations present for the first time combined measurements of many of its properties, at the third annual ...

Tiny drops of early universe 'perfect' fluid

September 1, 2015

The Relativistic Heavy Ion Collider (RHIC), a particle collider for nuclear physics research at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, smashes large nuclei together at close to the speed of ...

New material science research may advance tech tools

August 31, 2015

Hard, complex materials with many components are used to fabricate some of today's most advanced technology tools. However, little is still known about how the properties of these materials change under specific temperatures, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.