Battery design gets boost from aligned carbon nanotubes

Aug 06, 2013 by D'lyn Ford
Battery design gets boost from aligned carbon nanotubes
A sheet of aligned carbon nanotubes is rolled on a cylinder. Credit: Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

Researchers at North Carolina State University have created a new flexible nano-scaffold for rechargeable lithium ion batteries that could help make cell phone and electric car batteries last longer.

The research, published in Advanced Materials, shows the potential of manufactured sheets of aligned carbon nanotubes coated with silicon, a material with a much higher capacity than the graphite composites typically used in lithium ion batteries.

"Putting silicon into batteries can produce a huge increase in capacity—10 times greater," said Dr. Philip Bradford, assistant professor of , chemistry and science at NC State. "But adding silicon can also create 10 times the problems."

One significant challenge in using silicon is that it swells as lithium ion batteries discharge. As the batteries cycle, silicon can break off from the electrode and float around (known as pulverization) instead of staying in place, making batteries less stable.

When the silicon-coated carbon nanotubes were aligned in one direction like a layer of drinking straws laid end to end, the structure allowed for controlled expansion so that the silicon is less prone to pulverization, said Xiangwu Zhang, associate professor of textile engineering, chemistry and science at NC State.

Vertically grown aligned carbon nanotube (CNT) forests are drawn into aligned CNT sheets and coated with silicon. Credit: Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

"There's a huge demand for batteries for cell phones and electric vehicles, which need higher energy capacity for longer driving distances between charges," Zhang said. "We believe this carbon nanotube scaffolding potentially has the ability to change the industry, although technical aspects will have to be worked out. The manufacturing process we're using is scalable and could work well in commercial production."

Explore further: New framework from boron and silicon could smooth the way to higher capacities for lithium-ion batteries

More information: "Aligned Carbon Nanotube-Silicon Sheets: A Novel Nano-architecture for Flexible Lithium Ion Battery Electrodes" Online Aug. 1 in Advanced Materials onlinelibrary.wiley.com/doi/10.1002/adma.201301920/full

Abstract
In the pursuit of high performance lithium ion batteries (LIBs), significant effort has been expended to explore high performance cathode and anode materials. Silicon has the greatest lithium storage capacity per unit mass, and is therefore one of the most promising potential candidates to replace graphite as the anode material in future generations of batteries. The main challenge in utilizing silicon comes from the structural failure induced by its large volume change (>300%) during electrochemical cycling, leading to capacity loss. New designs, in which silicon and carbon can act in a mutually beneficial way, so that silicon can fully contribute to the capacity while maintaining cyclic stability, are needed. With this in mind, this communication describes novel, binder-free, thin sheet anodes for LIBs using aligned carbon nanotube (CNT) based silicon films which were processed in a way that is conducive to future commercial production. The horizontal super-aligned CNT sheets provided high surface area and a porous structure to facilitate both the uniform chemical vapor deposition of silicon during fabrication and the electrochemical kinetics between the silicon and the electrolyte during use. The CNT-based silicon composite sheets had both high specific energy capacity and stable cycle performance. This work also revealed an interesting new mechanism of deformation for silicon coated CNT structures after electrochemical cycling. A spring-like deformation behavior of the aligned CNTs helped to explain the electrochemical stability of the crystalline silicon coatings. These findings will guide future work to optimize this unique nano-architecture for further increases in energy density and stability. This aligned CNT scaffold design may be extended to other anode and cathode materials utilized in thin and flexible LIBs.

Related Stories

Nano 'beads on a string' could advance battery technology

Feb 27, 2013

Tiny beads of silicon, about ten thousand times thinner than a piece of paper, could someday make electric vehicles travel farther on a single charge or extend the life of your laptop's battery, say scientists ...

Phone and car batteries could use silicon made from rice

Jul 09, 2013

(Phys.org) —Silicon is in great demand. When used in lithium-ion batteries (LIBs), which power smartphones and electric and hybrid cars, silicon anodes have a much greater theoretical capacity than conventional ...

Recommended for you

'Exotic' material is like a switch when super thin

17 hours ago

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

El_Nose
5 / 5 (1) Aug 06, 2013
at first my hopes went up thinking they had made a carbon nanotube ribon

-- then i started to read
HeloMenelo
1 / 5 (10) Aug 07, 2013
mmm...I just usually see these get added to the ever growing list of "evolutionary" pipe dreams:

http://www.rcgrou...p;page=7

i see they're at 7 pages already.....
antialias_physorg
not rated yet Aug 07, 2013
The basic idea here is interesting: Give the silicon (or lithium) only one or two dimensions in which to expand instead of the usual three. Now if they introduce an appropriate placeholder between the layers (and the rows of nanotubes) that allows for just that amount of freedom then this could be pretty effective.

As with any evolving technology (or evolution in general): it doesn't have to be perfect. It just has to be better than existing technologies (at comparable price)

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...