Novel beams made of twisted atoms

August 7, 2013
Novel beams made of twisted atoms

Physicists have, for the first time, now built a theoretical construct of beams made of twisted atoms. These findings by Armen Hayrapetyan and colleagues at Ruprecht-Karls-University Heidelberg in Germany are about to be published in the European Physical Journal D. These so-called atomic Bessel beams can, in principle, have potential applications in quantum communication as well as in atomic and nuclear processes.

The concept for twisted atom beams stems from a similar approach with twisted photon beams, which are currently used as , for instance. It was later extended to twisted electron beams, which are used to improve the magnetic mapping of biological specimens and magnetic materials by means of twisted .

The authors focused on a beam made of twisted two-level atoms, which are driven by a laser field. They created a theoretical construct by using an equation, referred to as the non-relativistic Schrödinger equation, for atoms which are moving much slower than the speed of light. Hayrapetyan and colleagues solved this equation by taking into account the propagation directions of both the atomic and . By superimposing a multitude of plane waves with well-defined amplitudes, they produced Bessel beams for two-level atoms that resonantly interact with the laser field.

The authors confirmed that their atomic beams fulfilled the two main characteristics of Bessel beams. First, they showed that these beams carry a non-zero , as reflected by a rotation of the beam's wave front around the propagation axis in a corkscrew-like manner. Second, by taking a snapshot of the atomic beam intensity they demonstrated that these beams do not spread along the propagation axis. Moreover, they were able to control the profile of laser-driven atomic Bessel beams by tuning the parameters of both the atomic and laser beams.

Explore further: Researchers create 'tornados' inside electron microscopes

More information: Hayrapetyan, A. et al. (2013), Bessel beams of two-level atoms driven by a linearly polarized laser field, European Physical Journal D, DOI: 10.1140/epjd/e2013-30191-x

Related Stories

Emerging from the vortex

February 17, 2012

Whether a car or a ball, the forces acting on a body moving in a straight line are very different to those acting on one moving in tight curves. This maxim also holds true at microscopic scales. As such, a beam of electrons ...

Photonics: Beam me up

May 24, 2012

'Tractor beams' of light that pull objects towards them are no longer science fiction. Haifeng Wang at the A*STAR Data Storage Institute and co-workers have now demonstrated how a tractor beam can in fact be realized on a ...

Physics duo create tractor beam using dual Bessel beams

October 22, 2012

(Phys.org)—David Ruffner and David Grier of New York University have developed a technique for using Bessel beams to draw a particle toward a source. In their paper published in Physical Review Letters they describe how ...

Researchers discover a way to generate an electron Airy beam

February 22, 2013

(Phys.org)—A team of physicists in Israel has succeeded in generating an electron Airy beam for the first time. As they describe in their paper published in the journal Nature, the researchers used a technique similar to ...

The key to ion beams' polarisability

July 17, 2013

Polarisability determines the force with which an inhomogeneous external electric field acts on the ions of an ion beam. However, it can be quite tricky to obtain accurate values for this force. Now, two German theoretical ...

Recommended for you

Seeing quantum motion

August 28, 2015

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.