Engineering at the atomic scale

Aug 01, 2013 by Will Ferguson
Engineering at the atomic scale
Senior Brian Shoemaker is working with physics professor Timo Thonhauser on a summer research project to improve fuel cell technology for automobiles.

Brian Shoemaker is helping a national team of scientists answer a million dollar question. Could a substance that resembles baby powder curb global carbon emissions?

Shoemaker, a summer undergraduate research fellow, and a team of Wake Forest University researchers believe so, and a new Department of Energy (DOE) grant worth more than $1 million will enable them and collaborators at the University of Texas at Dallas design a that could help revolutionize green engineering.

"This is a really exciting project to work on because it is something that really hasn't been done to date," Shoemaker said.

Discovered less than a decade ago, a Metal Organic Framework (MOF) is a material scientists can engineer down to the molecular and .

A microscopic view shows how each powdery crystal contains millions of joined together with organic bonds to form highly porous, three-dimensional structures.

Because they are inexpensive and can easily be grown overnight, MOFs hold enormous potential for a new generation of clean engineering, from super-efficient CO2 filters to helping make a reality.

"The advantages of this stuff are mind blowing," said Timo Thonhauser, a physicist at Wake Forest University. "Gas molecules such as methane and carbon dioxide easily diffuse into MOFs, which can store them in high quantities and with unprecedented selectivity."

For example, a fuel tank filled with MOF crystals can store twice as much natural gas as its conventional counterpart, enabling a car to go twice as far on a single tank. Ecofuel World Tour driver Rainer Zietlow proved this by driving a Volkswagen automobile with a MOF tank more than 45,000 miles to test the utility of the technology.

A sponge-like gatekeeper

MOFs can be designed to attract and store specific molecules while letting others pass through their porous, grid-like structure. Thonhauser's group is collaborating with scientists at the UT Dallas and Rutgers University to harness this capability by designing super-efficient filters to trap carbon dioxide emitted by industrial plants.

To date, trapping individual carbon dioxide atoms from car engines or coal plants has been difficult because the molecules are so small. "If the pores in a filter are too big everything is going to go through," Thonhauser said. "Conventional filters are too coarse to catch most of this stuff. So we need to develop something that can selectively filter out specific, small atoms."

Thonhauser explains that one challenge with current MOF filters is that while they can trap carbon dioxide emitted when burning a fossil fuel like coal, they also hold on to water molecules.

"Once the water builds up, the filter won't hold on to CO2 anymore," he said.

This is where Shoemaker comes in. He has spent his summer in Thonhauser's lab, swapping different metals like magnesium, iron, gold and platinum into a computer simulation to see which types of metals work best in a MOF filter.

"What you really want is a filter on a molecular level that picks up one guy among hundreds of others," he said.

Parting the sea

Shoemaker is also helping Thonhauser with another piece of MOF-based research that could help make the world a much cleaner place.

"In the future, we envision cars that run on hydrogen instead of gas," Thonhauser said. "One of the big questions that remains in this line of research is where do I get the hydrogen?"

Our preliminary studies suggest the possibility of MOF materials being used to split water – one of the world's most abundant natural resources – into its separate components, hydrogen and oxygen.

Thonhauser explains that currently water can be split with various techniques, but those are all not very efficient.

"It is not clear by any means, but there is a possibility that MOFs might be able to split water effectively someday," Thonhauser said. "Brian is testing different metals to see if we can find one that will bind oxygen while letting the hydrogen pass through. If that were the case, it would be mind-boggling. It is a long shot, but you just don't know."

Explore further: Deconstruction of avant-garde cuisine could lead to even more fanciful dishes

add to favorites email to friend print save as pdf

Related Stories

Carbon sponge could soak up coal emissions

Feb 12, 2013

Emissions from coal power stations could be drastically reduced by a new, energy-efficient material that adsorbs large amounts of carbon dioxide, then releases it when exposed to sunlight.

New nano trap protects environment

Nov 01, 2012

A new type of nanoscale molecular trap makes it possible for industry to store large amounts of hydrogen in small fuel cells or capture, compact and remove volatile radioactive gas from spent nuclear fuel ...

MOFs materials special review issue

Feb 22, 2012

New analyses of more than 4,000 scientific studies have concluded that a family of "miracle materials" called MOFs have a bright future in products and technologies — ranging from the fuel tanks in hydrogen-powered cars ...

The search for new materials for hydrogen storage

Sep 20, 2012

(Phys.org)—Hydrogen is the ideal fuel for new types of fuel cell vehicles, but one problem is how to store hydrogen. In his doctoral dissertation Serhiy Luzan studies new types of materials for hydrogen ...

Recommended for you

Characterizing an important reactive intermediate

Oct 01, 2014

An international group of researchers led by Dr. Warren E. Piers (University of Calgary) and Dr. Heikki M. Tuononen (University of Jyväskylä) has been able to isolate and characterize an important chemical ...

Surfaces that communicate in bio-chemical Braille

Oct 01, 2014

A Braille-like method that enables medical implants to communicate with a patient's cells could help reduce biomedical and prosthetic device failure rates, according to University of Sydney researchers.

New material steals oxygen from the air

Sep 30, 2014

Researchers from the University of Southern Denmark have synthesized crystalline materials that can bind and store oxygen in high concentrations. Just one spoon of the substance is enough to absorb all the ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
1 / 5 (1) Aug 01, 2013
For example, a fuel tank filled with MOF crystals can store twice as much natural gas as its conventional counterpart, enabling a car to go twice as far on a single tank.

Close, but not quite (as the MOF does add weight and therefore reduces range). But that's just a nitpick.

Otherwise MOF are pretty darn awesome - from possible applications in storage of energy carriers for fuel cell to anodes/cathodes for flow battery designs (or just regular batteries).