In with antennas, out with cables

Aug 02, 2013
These office lamps are powered cordlessly. Credit: Fraunhofer ENAS

An eyesore and a tripping hazard in one: cable clutter is a real nuisance. Now a new kind of antenna is set to banish the pest, hidden in tables and supplying electronic devices with power. The "tables" can transmit data, too.

The pretty designer lamp on the table is meant to add charm to the room. If only the annoying cord wasn't there, then you could also put the lamp in the center of the table when it suited you. In future, you will be able to do just that thanks to SUPA Wireless technology. SUPA stands for Smart Universal Power Antenna, and the technology removes the need for , whether for lamps, laptops or smartphones. Researchers at the Fraunhofer Institute for Electronic Nano Systems ENAS have developed SUPA Wireless together with colleagues at the University of Paderborn and four medium-sized . "Without cables, you can put your lamps anywhere you like on the table – and they look better to boot," says Dr. Christian Hedayat, department head at Fraunhofer ENAS in Paderborn.

But if there are no cables and no batteries, where does the lamp get its electricity from? The principle is similar to that of an induction cooker: fitted in the table is a network of coils, each of which represents one transmitting antenna. If electricity flows through these , they generate a magnetic field. This in turn induces electricity into the coil fitted in the lamp, which lights up. However, the researchers were not satisfied with the lamp being supplied with electricity only at a specific point on the table: they wanted it to work anywhere on the tabletop. But this means that a magnetic field has to be generated wherever electricity is required – in other words, on the whole table. One solution would be to install a giant coil in the table, although this would not be very practicable. The researchers opted for a different route: "We populate a (PCB) with numerous antennas in such a way that a is generated only under the surface of the receiver. The distances between the antennas and the dimensions of them are carefully chosen to produce a homogeneous field," says Hedayat.

Cordless lamps available from late 2014

The researchers have also come up with a clever solution to ensure that radiation levels are not excessive: only the antennas fitted directly beneath where the receiver is standing are switched on; all the rest stay switched off. But how does the system recognize where the lamp is standing? "There are two approaches: a physical one and a numerical one," reveals Hedayat. The physical approach is based on the fact that the antennas perceive the receiver – that is, the lamp – as a specific load. The scientists exploit this electrical "signature". The researchers are currently working on the numerical approach: the "speaks" with the receiver, asks for its identification, and then inquires whether it is entitled to receive energy. The researchers also plan to make the question of how much energy the lamp needs part of the "conversation". In order to further reduce radiation, the scientists have restricted it to a very short transmission range above the table. That is enough to power common such as cellphones and tablet computers. The final development phase is currently beginning. Now it is a matter of getting the technology market-ready. According to the researchers' targets, the first application to be launched will be the lamp including PCB in late 2014. The PCBs will be supplied in various sizes so that customers can retrofit both small and large tables.

As well as cordlessly powering lamps, however, the system is also capable of powering laptops and smartphones etc. without any cables. For such devices, the researchers have built in an additional functionality. "We don't transmit just energy through the table, but data too," says Hedayat. And SUPA Wireless can also be integrated in medical applications, for instance to supply implants with energy. Take pressure sensors, which are implanted in the brain of stroke patients and set off an alarm when the brain pressure gets too high. Until now, these implants are usually powered by batteries, and when the batteries were empty, surgery was needed to replace them. With the new technology, these operations become unnecessary – making life a little easier for patients.

Explore further: Key factors for wireless power transfer

add to favorites email to friend print save as pdf

Related Stories

Key factors for wireless power transfer

Jul 31, 2013

What happens to a resonant wireless power transfer system in the presence of complex electromagnetic environments, such as metal plates? A team of researchers explored the influences at play in this type of situation, and ...

A millimeter-scale, wirelessly powered cardiac device

Aug 31, 2012

A team of engineers at Stanford has demonstrated the feasibility of a super-small, implantable cardiac device that gets its power not from batteries, but from radio waves transmitted from outside the body. The implanted device ...

Recommended for you

Large streams of data warn cars, banks and oil drillers

5 hours ago

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...