Aerial pictures reveal climate change

Aug 01, 2013
With the help of aerial images -- such as this one showing the western shore of Lake Starnberg -- scientists are able to track the spread of certain aquatic plants. This information sheds light on the quality of the water (blue: bare sediment; green and yellow: sparse vegetation; dark red: dense vegetation). Credit: Landesamt für Vermessung und Geodäsie

As a result of climate change, certain undesirable aquatic plants are starting to invade German water bodies. Even popular recreation areas like Lake Starnberg have been affected, leading to a growing need to monitor the spread of these plants. Up to now, regular monitoring has proven to be a costly process. But in a new approach, researchers at Technische Universität München have developed a quicker and less expensive method.

Taking a dip in a can quickly lose its appeal on contact with slippery . These might include Elodea nuttallii and Najas marina, better known as western waterweed and spiny naiad, both of which have been spreading rapidly in German water bodies in recent years.

Ecologists are able to use them as indicator plants. Their proliferation allows researchers to draw conclusions on water quality – Elodea nuttallii and Najas marina are particularly common in lakes with rising . The rapid spread of such plants over a wide area can upset the balance of sensitive lake ecosystems.

Satellite images support research divers

To investigate changes in , water management authorities regularly monitor . This requires the observations of divers, who map the "vegetation blankets" at different depths.

This process does produce highly detailed information, but it requires a lot of effort. Doctoral students from TUM's Limnological Research Station in Iffeldorf have carried out research on this topic for their dissertations. The result of their work is a new process that will save both time and money.

"This new idea involves replacing some of the diving effort with high-resolution aerial and ," explains project supervisor Dr. Thomas Schneider. "In order to draw conclusions on plant growth from the imagery produced, we measure reflectance. Each plant species reflects the in a specific way, depending on its and structure."

Every lake has its own reflectance characteristics

The researchers developed a digital library with the spectral characteristics of plants to help them evaluate the aerial and satellite images. This was a lengthy process, however, as doctoral student Patrick Wolf explains: "It took us two years to photograph the plants from a boat and measure their reflectance. In order to capture the plants from a suitable angle and avoid shadow, the cameras and sensors were submerged using an extension arm."

Aquatic plants reflect light in different ways. Their reflectance spectra give scientists a bird's-eye view of the spread of both plant species. Credit: P. Wolf/TUM

The problem is that factors like dissolved matter, sediment type, light refraction and different depths of water make it hard to assess plant populations. That is why the researchers developed mathematical algorithms to "factor out" the image errors in combination with the measurement data from the boat. Since every body of water has its own distinct characteristics, a different algorithm was developed for each lake.

Early detection of ecosystem risks

The new method is best suited for monitoring large, uniform plant populations. "We will still need divers to inspect areas with small-scale changes in vegetation," says Wolf. "The aerial view cannot replace the work of the divers, but it can provide effective support."

The TUM limnologists have developed a remote sensing method for regularly monitoring larger plant populations in lakes. This makes it easier and more cost-effective to identify unwelcome developments. Plants like spiny naiad and waterweed are not just a nuisance for swimmers – their spread also has the potential to change the ecosystem of a body of water in the long term. They could, for example, displace other species or alter the habitats of different organisms like fish.

Explore further: Pitcher plants provide tipping point: Researchers use them to identify signs of trouble in lakes

More information: Collecting in situ remote sensing reflectances of submersed macrophytes to build up a spectral library for lake monitoring; Patrick Wolf, Sebastian Rößler, Thomas Schneider and Arnulf Melzer; European Journal of Remote Sensing, 2013, 46: 401-416; doi: 10.5721/EuJRS20134623

add to favorites email to friend print save as pdf

Related Stories

Alpine lakes reflect climate change

Jun 06, 2013

Increases in temperature as a result of climate change are mirrored in lake waters where temperatures are also on the rise. A new study, by Dr. Martin Dokulil, retired researcher from the Institute for Limnology at the University ...

Recommended for you

Japan lawmakers demand continued whaling

1 hour ago

Japanese lawmakers on Wednesday demanded the government redesign its "research" whaling programme to circumvent an international court ruling that described the programme as a commercial hunt dressed up as ...

EU must take urgent action on invasive species

4 hours ago

The EU must take urgent action to halt the spread of invasive species that are threatening native plants and animals across Europe, according to a scientist from Queen's University Belfast.

Ranchers benefit from long-term grazing data

6 hours ago

Scientists studying changes in the Earth's surface rely on 40 years of Landsat satellite imaging, but South Dakota ranchers making decisions about grazing their livestock can benefit from 70 years of data ...

User comments : 0

More news stories

Adventurous bacteria

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...