Thriving tundra bushes add fuel to Northern thaw

Jul 04, 2013 by Margie Wylie
Left: Current deciduous shrub distribution. Right: Simulation of bare ground converted to deciduous shrubs. (Credit: Celine Bonfils)

(Phys.org) —Carbon-gobbling plants are normally allies in the fight to slow climate change, but in the frozen north, the effects of thriving vegetation may actually push temperatures higher. In a series of climate simulations performed at NERSC, a group of researchers found that the spread of bushes, taller ones especially, could exacerbate warming in northern latitudes by anywhere from 0.6°C to 1.8°C per year.

What's more, taller species have the potential to warm tundra soil more deeply, threatening to thaw permafrost in some areas. That means more of the now locked up by a year-round freeze could be released into the atmosphere, increasing warming even more. Their results were published in Environmental Research Letters.

"Until now, most climate model studies have only focused on the induced by a complete tundra-to-forest conversion," said Celine Bonfils, a scientist at Lawrence Livermore National Laboratory (LLNL) and principal investigator in this study. While warming could eventually lead to northward forest expansion, "we don't expect a full-scale conversion of tundra to forest anytime in the next century," said Tom Phillips, one of Bonfils's collaborators on the study, also of LLNL. "More likely you'll see shorter shrubs or new species that are taller moving in gradually."

That is, in fact, what has been happening to some tundra regions. The authors point out that one study found a 1.2% increase per year in coverage in Alaska.

To better understand the more likely short-term fate of expanding and invading shrubs, Bonfils and colleagues simulated two, more realistic, although still idealized, scenarios: the expansion of the short shrubs that already grow on the tundra, and the invasion of taller shrubs. In both cases the team found that temperatures rose, as expected based on earlier simulations involving forest expansion, but the rise caused by taller shrubs was striking, says Phillips, a coauthor of the study.

"The physics of what's happening here is pretty straightforward," says Phillips. "Shrubs tend to darken the land surface, so it absorbs more sunlight, warming the ground and increasing evaporation." Plants also suck water from the soil and transpire it into the air, a process called evapotranspiration. That water vapor, in turn, acts as a greenhouse gas, trapping heat, raising temperatures, and creating more favorable growing conditions.

"These runs, performed at NERSC, show for the first time that the strength and timing of these two mechanisms greatly depends on the height of the shrubs, and the time at which branches and leaves protrude above the snow," explained Bonfils. Taller shrubs darken the ground earlier in the spring and transpire more efficiently than shorter , thereby increasing soil warming and making the permafrost less stable.

"These simulations mainly focus on the biophysical effects of shrub height and expansion, but they did not include the biogeochemical effects. In other words, the plants were not allowed to gobble carbon as they grow," added Bonfils. "In expanding and growing taller, the plants will remove some greenhouse gases from the atmosphere, but probably not enough to negate the warming and permafrost destabilization induced through reduced reflection of sunlight and increased transpiration. New would be needed to verify this hypothesis."

Explore further: Dutch unveil big plan to fight rising tides

More information: dx.doi.org/%2010.1088/1748-9326/7/1/015503

Related Stories

Arctic getting greener

Jun 11, 2012

Recent years' warming in the Arctic has caused local changes in vegetation, reveals new research by biologists from the University of Gothenburg, Sweden, and elsewhere published in the prestigious journals ...

Warming turns tundra to forest

Jun 04, 2012

(Phys.org) -- In just a few decades shrubs in the Arctic tundra have turned into trees as a result of the warming Arctic climate, creating patches of forest which, if replicated across the tundra, would significantly ...

Telling changes on the tundra

Apr 12, 2012

(Phys.org) -- University of Alberta researchers are part of a groundbreaking, multinational study of the effect of global warming on tundra vegetation in various regions around the world.

Warming climate may cause arctic tundra to burn

Mar 05, 2008

Research from ancient sediment cores indicates that a warming climate could make the world’s arctic tundra far more susceptible to fires than previously thought. The findings, published this week in the online journal, ...

Recommended for you

Environmentalists and industry duke it out over plastic bags

41 minutes ago

Campaigns against disposable plastic shopping bags and their environmental impact recently scored a major win. In August, California lawmakers passed the first statewide ban on the bags, and Governor Jerry Brown is expected ...

Global change: Trees continue to grow at a faster rate

2 hours ago

Trees have been growing significantly faster since the 1960s. The typical development phases of trees and stands have barely changed, but they have accelerated—by as much as 70 percent. This was the outcome ...

Cape Cod saltmarsh recovery looks good, falls short

2 hours ago

After decades of decline, grasses have returned to some once-denuded patches of Cape Cod's saltmarshes. To the eye, the marsh in those places seems healthy again, but a new study makes clear that a key service ...

Manure offsets fertiliser's nano-scale changes

2 hours ago

A UWA study has shown how long-term use of chemical fertilisers changes the soil on a nanoparticle scale and how these changes can be avoided by adding organic matter such as manure.

User comments : 0