On the trail of bacteria: Infrared light allows characterization of pathogens

Jul 12, 2013
Staphylococcus aureus bacteria. Credit: Grunert/Vetmeduni Vienna

Scientists at the University of Veterinary Medicine, Vienna (Vetmeduni Vienna) are hot on the trail of the bacterium Staphylococcus aureus. The researchers have developed a technique for the rapid and reliable distinction between strains that can cause chronic infections and those that cannot. Using infrared light and artificial intelligence, the scientists present a sophisticated method for the prediction of disease progression. Their results are now published in the Journal of Clinical Microbiology.

The bacterium Staphylococcus aureus (S. aureus) is commonly found in nature and frequently colonizes the skin and the of humans. A healthy immune system can fight the microorganism but once the immune system is weakened the pathogen can spread and lead to life-threatening diseases of the lungs, the heart and other organs. Moreover, S. aureus produces toxins in foods and can cause serious food poisoning. Its effects are not confined to humans: in cattle, S. aureus frequently causes inflammation of the udders, so the bacterium is also of great interest in veterinary medicine.

Bacterial microevolution and chronic infections

S. aureus comes in many different forms, which helps it evade the immune system. Aggressive types of S. aureus form capsules and multiply rapidly but are also quickly recognized by the immune system. Capsule-free forms are better able to survive within cells and are less well recognized by the immune system. In other words, they "hide and seek" before they attack and so are more likely to cause that are harder to treat. Recent studies suggest that in the course of adapting to its host (human or animal) S. aureus undergoes a form of microevolution, during which it loses its capsule. The capsule-free form evades the host immune system and can even survive .

Infrared light distinguishes capsule types

S. aureus was previously detected – and the nature of its capsule checked – by means of specific antibodies that bind the capsule. The procedure is relatively complex, as the antibodies are not commercially available and thus have to be produced in animal experiments. Tom Grunert and colleagues have now developed a method by which the capsules can quickly and clearly be distinguished from one another without the use of antibodies. The technique relies on a physical procedure known as FTIR or Fourier Transform Infrared Spectroscopy. Infrared light is shone on the to be tested and the resulting spectral data are input into a supervised self-learning system, a so called artificial neuronal network, which uses the data to work out the type of capsule. As Grunert says, "With the new method we can routinely test patient samples with a success rate of up to 99 per cent."

Bacteria at the crossroads

The head of Grunert's institute, Monika Ehling-Schulz, puts the work in a broader context. "In principle, germs have two choices when they infect a host: attack or hide – in technical terms virulence or persistence. If they attack, they risk destroying the host and consequently themselves, whereas if they hide, they may be outcompeted by others. A detailed knowledge of the mechanisms of virulence and persistence and the way bacteria switch between them will help us to develop novel and more effective therapies."

Explore further: Fighting bacteria—with viruses

More information: Grunert, T. et al. Rabid and Reliable Identification of Staphylococcus aureus Capsular serotype by Means of Artificial Neural Network-Assisted Fourier Transform Infrared Spectroscopy, Journal of Clinical Microbiology. www.ncbi.nlm.nih.gov/pubmed/23658268

add to favorites email to friend print save as pdf

Related Stories

Vibativ approved for certain bacterial pneumonia

Jun 24, 2013

(HealthDay)—The antibiotic Vibativ (telavancin) has been approved by the U.S. Food and Drug Administration to treat pneumonia caused by Staphylococcus aureus bacteria when other treatments aren't suitable.

Research shows how pathogenic bacteria hide inside host cells

Jan 26, 2011

A new study into Staphylococcus aureus, the bacterium which is responsible for severe chronic infections worldwide, reveals how bacteria have developed a strategy of hiding within host cells to escape the immune system as wel ...

Staphylococcus aureus: Why it just gets up your nose

Dec 27, 2012

A collaboration between researchers at the School of Biochemistry and Immunology and the Department of Microbiology at Trinity College Dublin has identified a mechanism by which the bacterium Staphylococcus aureus (S. au ...

Cigarette smoke boosts virulence in Staphylococcus aureus

Nov 08, 2012

Exposure to cigarette smoke has long been associated with increased frequency of respiratory infections—which are harder to treat in smoke-exposed people than in those who lack such exposures. Now Ritwij Kulkarni of Columbia ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0