Technology developed to control light scattering using holography

Jul 11, 2013
Figure 1. Observed images.

Recently, a popular article demonstrated that opaque glass becomes transparent as transparent tape is applied to the glass. The scientific principle is that light was less scattered as the rough surface of the opaque glass is filled by transparent tape. Professor Yong Keun Park from KAIST's Department of Physics, in a joint research with MIT Spectroscopy Lab, has developed the technology to easily control light scattering using holography. Their results are published on Nature's Scientific Reports May 29th online edition.

This technology allows us to view xobjects behind visual obstructions such as cloud or smoke, as well as visual xobjectives behind xobjects that highly scatters light such as . The research team applied the holography technology that records both the direction and to control of the xobjects between the observer and the visual xobjective. The team was able to retrieve the original image by recording the information of and reflecting the light precisely to the other side.

Figure 2. The principles of light scattering control.

This phenomenon is known as phase conjugation in physics. Professor Park's team was the first in the world to apply phase conjugation and digital holography to observe two-dimensional image behind a highly scattering wall. "This technology will be applied to in many fields of physics, optics, nanotechnology, medical science, and even military science," said Professor Park. "This technology is different from what is commonly as penetrating camera or invisible clothes," he nevertheless drew the line at overinterpretating the technology, "Currently, the significance is on the development of the technology itself that allows us to accurately control the scattering of light."

Explore further: New method for non-invasive prostate cancer screening

add to favorites email to friend print save as pdf

Related Stories

Looking through the opaque screen for sharper images

Dec 07, 2012

Taking images through opaque, light-scattering layers is a vital capability and essential diagnostic tool in many disciplines, including nanotechnology and the biosciences. Current techniques are unable to ...

Manipulating Lorentz and Fano spectral line shapes

May 13, 2013

( —It is widely known that the optical properties of certain materials can be modified by using lasers to control the quantum states of their optical electrons. Lasers that can generate ultra-short ...

Recommended for you

New method for non-invasive prostate cancer screening

7 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

8 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

9 hours ago

( —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

13 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0