Team makes breakthrough in solar energy research

July 30, 2013 by Kenneth K Ma
Black metal samples with different nanostructures thickness and coated with aluminum laying over a high reflective flat aluminum surface.

The use of plasmonic black metals could someday provide a pathway to more efficient photovoltaics (PV) —- the use of solar panels containing photovoltaic solar cells —- to improve solar energy harvesting, according to researchers at Lawrence Livermore National Laboratory (LLNL).

The LLNL Materials Engineering Division (MED) research team has made breakthroughs experimenting with black metals. These nanostructured metals are designed to have low reflectivity and high absorption of visible and . The MED research team recently published their black metals research results in a cover-page article in the May issue of Applied Physics Letters titled "Plasmonic Black Metals in Resonant Nanocavities."

Authored by MED physicist and research team member Mihail Bora, the article details the work of the Nanophotonics and Plasmonics research team led by LLNL Engineer Tiziana Bond.

It describes the team's concept of black metals, which are not classic metals but can be thought of as an extension of the black silicon concept. When silicon is treated in a certain way, such as being roughened at the nanoscale level, it traps light by multiple reflections, increasing its solar absorption. This gives the silicon a black surface that's able to better trap the full sun's .

Similarly, black metals are produced by some sort of random nanostructuring—either in gold or silver—without guaranteeing a full, reliable and repeatable full solar absorption. However, Bond's team developed a method to improve and control the absorption efficiency and basically turn the metals as black as they want, allowing them to increase, on demand, the absorption of a higher quantity of solar wavelengths. Her team built nanopillar structures that are trapping and absorbing all the relevant wavelengths of the entire .

"Our article was picked for the cover story of Applied Physics Letters because it represents cutting-edge work in the area of plasmonics, the broadband operation obtained with a clear design and its implication for the photovoltaic (PV) yield," Bond said.

This new LLNL technology could one day be used in the energy harvesting industry such as PV. By incorporating metallic nanostructures with strong coupling of incident light, broad spectral and angular coverage, the LLNL team is providing a path for more efficient and thermovoltaics (a form of energy collection) by means of plasmon-exciton conversion, according to Bond and Bora.

Explore further: Imaging nanoporous metals with beams of electrons provides deep insights into unusual optical properties

More information: Paper: apl.aip.org/resource/1/applab/v102/i25/p251105_s1
The teams' black metal research will also be featured in the September issue of Nature Photonics.

Related Stories

Blackening copper opens new applications

January 16, 2013

(Phys.org)—Copper is one of the world's most widely used metals. Now researchers at the University of Dundee have found that blackening copper using industry-standard lasers could make it even more adaptable and efficient.

Scientists break record for thinnest light-absorber

July 18, 2013

Stanford University scientists have created the thinnest, most efficient absorber of visible light on record. The nanosize structure, thousands of times thinner than an ordinary sheet of paper, could lower the cost and improve ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

NikFromNYC
2.6 / 5 (5) Jul 30, 2013
Micrograph from paper:

http://s14.postim...TEMP.jpg

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.