Stabilisation of microdroplets using ink jet process

Jul 31, 2013 by Angelika Jacobs
A specifically designed inkjet print-head (left) allows stabilization of micrometer-sized droplets (right, from above). Credit: Galliker et al, PNAS 2013

Progress means that many things that are used in everyday life are becoming more manageable, practical and generally smaller. This also applies to biological and chemical experiments. To save material and resources, scientists are trying to reduce their experiments to increasingly smaller sizes and scales. But micrometre-sized droplets evaporate very quickly, making the smooth handling of a micro experiment difficult.

Patrick Galliker and Julian Schneider from the Laboratory of Thermodynamics in Emerging Technologies show how such tiny droplets can be controlled and stabilised. For this purpose, they make use of a process that they developed for the 3D printing of nano electronic parts (http://phys.org/news/2012-06-method-.html). Using a specially manufactured ink jet print head, the researchers produce nanometre-sized droplets of liquid, which may contain chemicals or biomolecules, for example. These droplets are placed at precise locations on a surface and eventually create a larger droplet of accumulated liquid that can be used as a nano or micro reactor for chemical or .

The large droplet is kept stable by constant supply of liquid that counteracts evaporation. The droplets that the researchers add to the large droplet for this purpose contain less than an attolitre of liquid, i.e. sextillionths of a litre. Furthermore, they can control the concentration of a substance in the droplet: by enlarging the total volume of the droplet, they reduce the concentration of a solute. Vice versa, they can increase the concentration by adding more of one chemical to the existing droplet or by allowing the droplet to partly evaporate.

Such precise control over the size and composition of microdroplets has been difficult to date. Until now, researchers have used chips with micro channels to mix tiny amounts of liquid, and . However, these chips must be specifically built for every experiment. Furthermore, scientists add an immiscible layer of oil to these chips, so that the aqueous solution in which the intended reactions take place does not evaporate.

The new ink jet process offers more flexibility and more over the composition of reaction mixtures on the nanometre scale. "The great thing about our method is that it can be used for two completely different applications," says Galliker. "In electrotechnology to print tiny electronic parts and in the biosciences to control micro experiments."

Explore further: How the physics of champagne bubbles may help address the world's future energy needs

More information: Galliker, P. et al. Open-atmosphere sustenance of highly volatile attoliter-size droplets on surfaces. PNAS, 2013. DOI: 10.1073/pnas.1305886110

Related Stories

Water droplets prefer the soft touch

Jun 25, 2013

(Phys.org) —Researchers have found a way to drive water droplets along a flat surface without applying heat, chemicals, electricity, or other forces: All that's required is varying the stiffness of the ...

Surfing on acoustic waves (w/ Video)

Jul 16, 2013

(Phys.org) —ETH researchers are able to make objects such as particles and liquid droplets fly in mid-air by letting them ride on acoustic waves. For the first time, they have been able to also control ...

Milikelvins drive droplet evaporation

Jul 18, 2013

Evaporation is so common that everybody thinks it's a well understood phenomenon. Appearances can be, however, deceptive. Recently, a new, earlier not predicted mechanism of evaporation was discovered. Experiments ...

Researchers build 3-D structures out of liquid metal

Jul 09, 2013

(Phys.org) —Researchers from North Carolina State University have developed three-dimensional (3-D) printing technology and techniques to create free-standing structures made of liquid metal at room temperature.

Recommended for you

What's next for the Large Hadron Collider?

Dec 17, 2014

The world's most powerful particle collider is waking up from a well-earned rest. After roughly two years of heavy maintenance, scientists have nearly doubled the power of the Large Hadron Collider (LHC) ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.