Solar prominences put on strange and beautiful show in the Sun's sky (w/ Video)

Jul 04, 2013
Rotating disc motions. Credit: NASA/SDO/Li/Smith/Aberystwyth University

(Phys.org) —Cloud spotting seems to be growing in popularity as a hobby here on Earth. Now scientists studying the solar atmosphere are building their own collection of fascinating moving features that they've spotted in the Sun's sky.  The unusual solar prominences include a giant disc that rotates for several hours, feathery streamers as long as fifty Earths, a super-heated jet striking the top of a prominence and twisted ribbons flowing in opposite directions at a million kilometres per hour.

The features were discovered by Dr Xing Li and PhD student, Jeff Smith, of Aberystwyth University using the Atmospheric Imaging Assembly (AIA) telescope on board the Solar Dynamics Observatory (SDO) satellite. The findings have been presented at the RAS National Astronomy Meeting in St Andrews.

Prominences are – relatively – cold gaseous features, with temperatures around 5000 degrees Celsius compared to the surrounding the hot of about 1-2 million degrees. They can be seen as towering features extending outwards from the Sun's surface, often in the shape of a loop. They are called when viewed against the , appearing as dark stripes because the cold gases they contain absorb the light emitted from below. Solar prominences and filaments supply most of the material released in coronal , vast eruptions from the Sun's atmosphere that can cause and create on Earth.

Rotating discs in solar prominences were first observed decades ago, using ground-based telescopes, and have puzzled solar physicists since. The new SDO observations of a rotating disc reveal that the feature covers a temperature range from a few thousand to one million degrees Celsius. Li and Smith believe that the rotation is caused by turbulence produced at the interface of two gases of enormously different temperatures.

This video is not supported by your browser at this time.
Rotating disc motions. Credit: NASA/SDO/Li/Smith/Aberystwyth University

"We think the rotation is produced when hot gases enter a cold medium in an organised fashion. The magnetic field serves as a thermal barrier between the two media. The resulting rotation can last hours," said Li.

The persistent horizontal motion of feathery streamers from a solar prominence was observed by SDO over a period of more than 15 hours. Li and Smith believe that the likely cause is a large-scale, slow restructuring of the magnetic field through a process called magnetic reconnection.

This video is not supported by your browser at this time.
Persistent filament/prominence horizontal motions: Credit: NASA/SDO/Li/Smith/ Aberystwyth University

This video is not supported by your browser at this time.
Superheated jet striking a prominence. The jet is emitted to the left of the prominence and travels in an anticlockwise arc, striking the top of the prominence.

In a further observation, lasting around three hours, a jet of superheated gases as hot as 1.5 - 2 million degrees Celsius was sucked from the coronal cavity surrounding a prominence and spiralled up along a helical path to strike the top of prominence 50 000 km high.

"The feat of the jet hitting the top of the prominence, and the distances involved, is comparable to a ballistic missile hitting a satellite in geostationary orbit!" said Li.

This video is not supported by your browser at this time.
Counter-streaming motions

Finally the SDO imagery showed counter-streaming flows at more than a million kilometres per hour along a filament channel consisting of many very thin threads.

"These fabulous motions suggest more complex magnetic structures of filaments/prominences than scientists previously thought," said Li.

Smith added: "These events are beautiful to observe and also set a fascinating challenge to get to the bottom of the physics involved."

Explore further: UI researchers launch rockets in search of unseen parts of universe

Related Stories

Huge tornadoes discovered on the Sun

Mar 29, 2012

(PhysOrg.com) -- Solar tornadoes several times as wide as the Earth can be generated in the solar atmosphere, say researchers in the UK. A solar tornado was discovered using the Atmospheric Imaging Assembly ...

STEREO spots a CME soaring into space

Sep 11, 2012

The enormous eruption of a solar prominence and resulting coronal mass ejection (CME) back on August 31 that was captured in amazing HD by NASA's Solar Dynamics Observatory was also spotted by the Sun-flanking STEREO-B spacecraft, ...

Double trouble on the Sun

Nov 19, 2012

(Phys.org)—The Sun erupted with two prominence eruptions, one after the other over a four-hour period on Nov. 16, 2012, between the hours of 1 and 5 a.m. EST. The red-glowing looped material is plasma, ...

Recommended for you

Scanning Earth, saving lives

10 hours ago

A high-speed camera for monitoring vegetation from space and combating famine in Africa is being adapted to spot changes in human skin cells, invisible to the naked eye, to help diagnose skin diseases like ...

THEMIS camera helps NASA pick site for next Mars lander

13 hours ago

NASA's next Mars space probe, a lander named InSight, is due to touch down on the Red Planet in September 2016 with a mission focused on the planet's internal properties. Its landing place has been chosen ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.