Toward a safer form of acetaminophen

July 10, 2013
Toward a safer form of acetaminophen

Efforts to develop a safer form of acetaminophen—the pain and fever-reducer that is one of the most widely used drugs—have led to discovery of substances that may have less potentially toxic effects on the liver. A report on the research appears in ACS Medicinal Chemistry Letters.

Roman Shchepin and colleagues explain that a link exists between acetaminophen and liver damage. The damage may be severe and can occur with intentional and accidental overdoses, as well as when susceptible individuals take the drug. Indeed, acetaminophen has been implicated in almost 50 percent of all cases in the United States alone. Scientists have known the biochemical basis of acetaminophen's , and Shchepin and colleagues set out to develop safer versions of acetaminophen.

They describe the design and testing of two compounds that have a similar architecture to acetaminophen, but aren't toxic to grown in the laboratory. The researchers say that, although further testing is needed, these compounds are promising candidates for acetaminophen replacements.

Explore further: FDA group recommends acetaminophen liver warnings

More information: "Rational Design of Novel Pyridinol-Fused Ring Acetaminophen Analogues" ACS Med. Chem. Lett., Article ASAP DOI: 10.1021/ml4000904

Abstract
Acetaminophen (ApAP) is an electron donor capable of reducing radicals generated by redox cycling of hemeproteins. It acts on the prostaglandin H synthases (cyclooxygenases; COXs) to reduce the protoporphyrin radical cation in the peroxidase site of the enzyme, thus preventing the intramolecular electron transfer that generates the Tyr385 radical required for abstraction of a hydrogen from arachidonic acid to initiate prostaglandin synthesis. Unrelated to this pharmacological action, metabolism of ApAP by CYPs yields an iminoquinone electrophile that is responsible for the hepatotoxicity, which results from high doses of the drug. We synthesized novel heterocyclic phenols predicted to be electron donors. Two of these inhibited the oxygenation of arachidonic acid by PGHS-1 and myoglobin and also were shown to be more metabolically stable and exhibited less direct cytotoxicity than acetaminophen. They are leading candidates for studies to determine whether they are free of the metabolism-based hepatotoxicity produced by acetaminophen.

Related Stories

FDA group recommends acetaminophen liver warnings

May 27, 2009

(AP) -- A Food and Drug Administration report released Wednesday recommends stronger warnings and dose limits on drugs containing the painkiller acetaminophen, citing an increased risk of liver injury.

Recommended for you

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.