Purple bacteria on earth could survive alien light

Jul 23, 2013
Purple bacteria on earth could survive alien light
Purple bacteria make a "gel" around the individual cells which binds them into a colony. That is why they appear as "clouds." The insert illustrates the general principle of the model used in the study. It depicts photons arriving, then being passed around the bacteria's membrane, where the light harvesting mechanism is located, then arriving at the various reaction center 'kitchens', being processed, and then being turned out as metabolic products for the bacteria to survive. Credit: Dr. Wayne B. Lanier

Purple bacteria contain pigments that allow them to use sunlight as their source of energy, hence their color. Small as they are, these microbes can teach us a lot about life on Earth, because they have been around longer than most other organisms on the planet. University of Miami (UM) physicist Neil Johnson, who studies purple bacteria, recently found that these organisms can also survive in the presence of extreme alien light. The findings show that the way in which light is received by the bacteria can dictate the difference between life and death.

Johnson, head of the inter-disciplinary research group in complexity in the College of Arts and Sciences at UM and his collaborators share their findings in a paper titled "Extreme alien light allows survival of terrestrial " published online in Nature's Scientific Reports. The study reveals new possibilities for life on earth and elsewhere in the universe.

"The novelty of our work is that despite all the effort aimed at finding planets outside our solar system where life might exist, people have ignored the fact that —and hence life on Earth— isn't just about having the right atmosphere and light intensity," Johnson says. "Instead, as we show, a crucial missing ingredient is how the light arrives at the organism."

The results are also applicable in the scenario of our own sun developing extreme fluctuations and in a situation in which bacteria are subject to extreme artificial light sources in the laboratory.

The findings may also help with engineering a new generation of designer-light-harvesting structures.

Using a mathematical model the researchers calculated the probability of survival when the bacteria is subjected to bursts of light, similar to what might be experienced if the light source was an unstable star. The flow of light was on average the same as the bacteria would normally receive, but since they would be receiving it in such a strange way, the researchers wondered under what situations the bacteria could survive.

"It's like saying we know we need to bring home a certain amount of food per week, but what happens if all of the food is delivered in one day? You might not be able to store all of it," Johnson says. "Maybe some food would get spoiled, or maybe you wouldn't have time to use it all," he says. "The light is like food for the bacteria, and the issue is the amount of food and the timing with which you bring it in."

Light comes in packets of photons. Purple bacteria process light in places callereaction centers, where the energy of the photons fuels the production of metabolic materials. Johnson compares the situation to asking what happens when food arrives in the kitchen in an irregular way.

"The reaction center, like any kitchen, can't do a thousand things at once. They can only handle one photon at a time," Johnson says. "The new chemicals made in the process take some time to diffuse. Otherwise, it results in a buildup of chemicals that can kill the bacteria," he says. "Since we are concluding this from statistical calculations, we can say it's very unlikely that the bacteria will survive."

To their surprise, the researchers found that while many seemingly innocuous changes in the way the arrives at the organisms end up proving fatal, the bacteria could survive a sudden deluge of photons. The key to enduring such extreme conditions is that that there are many reaction center 'kitchens.' Therefore, the photons spread out naturally, leaving each reaction center enough time to recover.

"Ultimately the chemicals have time to diffuse and that is what saves it," Johnson says. "On the average the bacteria is therefore getting what it needs from the reaction centers."

The researchers suspect this mechanism is not unique to . In the future, they will expand the study to other photosynthetic life forms.

Explore further: Top Japan lab dismisses ground-breaking stem cell study

Related Stories

Researchers recreate photosynthesis to power devices

Jul 04, 2013

Nature has perfected the art of using the Sun to fuel growth. A team of international researchers looked into what is needed to recreate the process artificially. The results could have various uses, from ...

How Archaea might find their food

Jun 10, 2013

The microorganism Methanosarcina acetivorans lives off everything it can metabolize into methane. How it finds its sources of energy, is not yet clear. Scientists at the Ruhr-Universität Bochum together with c ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

19 hours ago

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.